三角形的面积教学设计

时间:2024-11-14 16:58:50 教学设计 我要投稿

三角形的面积教学设计合集(15篇)

  作为一名无私奉献的老师,总归要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的三角形的面积教学设计,欢迎大家分享。

三角形的面积教学设计合集(15篇)

三角形的面积教学设计1

  教学内容:

  人教版五年级上册第五单元第84~87页内容

  教学目标:

  1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:

  探索并掌握三角形的面积公式,能正确计算三角形的面积。

  教学难点:

  理解三角形面积公式的推导过程。

  教学准备:

  多媒体课件、三角形学具。

  教学过程:

  一、创设情境,引出课题

  课件出示一个平行四边形。

  师:这是什么图形,你会计算它的面积吗?说一说怎么算。

  根据学生的回答,板书:平行四边形的面积=底×高

  师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?

  学情预设:学生一般有以下两种分法:

  师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?

  学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。

  师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)

  师:为什么?(剪下的两个三角形完全一样,就说明三角形的.面积是平行四边形的一半)

  师:刚才我们借助已知的平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。

  【设计意图】:

  从不会计算面积的图形中揭示课题,激发学生的探究兴趣。

  板书课题:三角形的面积

  二、自主探索,得出公式

  1、动手实验。

  师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。

  学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。

  【设计意图】:

  给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。

  2、学生代表上台演示汇报

  师:你是如何推导出三角形的面积公式的?谁来给我们演示?

  演示一:把两个完全一样的三角形拼成平行四边形。(如下图)

  师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的面积可以怎么计算呢?

  根据学生的回答,教师板书如下:

  三角形的面积=平行四边形的面积÷2=底×高÷2

  展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)

  师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。

  根据学生的回答,教师板书如下:

  三角形的面积=长方形的面积÷2=长×宽÷2=底×高÷2

  师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?

  三、学以致用,解决问题。

  师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)

  1、计算生活中的三角形的面积

  (1)计算红领巾的面积

  师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)

  (课件出示例2)

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  师:请同学们算一算。

  (学生练习后讲评订正)

  (2)计算三角形标志牌的面积

  师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))

  师:都是这样做的吗?为什么不用3.2×3÷2呢?

  (因为3.2分米不是3分米对应的底。)

  师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?

  (3.2×3.75÷2)

  师:通过这道题的解答,你明白了什么?

  师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。

  (3)认识道路交通警示标志。

  师:请看屏幕。(多媒体出示)

  师:你们认识这些交通警告标志吗?

  (学生回答后,老师边小结,课件边出示各标志的含义)

  师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)

  (学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)

  (4)画面积相等的三角形。

  师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)

  师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?

  (学生打开书87页,在书中画一画,完成第6题)

  师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)

  师:通过画这样的三角形,你发现了什么?

  生:三角形的面积与底和高有关,与形状无关。

  【设计意图】:

  通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕

  四、课堂小结

  师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?

  (学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)

  五、布置作业:

  课本P86--87页第2、4、5题

三角形的面积教学设计2

  【教学内容】

  探索活动(二)《三角形的面积》教材第25页——26页

  【教学目标】

  知识目标:①使学生经历、理解三角形面积公式的推导过程。

  ②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

  能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

  德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。

  【教学重点】

  理解三角形面积计算公式,正确计算三角形的面积 理

  【教学难点】

  理解三角形面积公式的推导过程。

  【课前准备】

  三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。

  教师准备多媒体课件一份、演示教具一套

  【教学进程】

  一 复习引入

  1、出示课件

  师:比一比,下面两个图形哪个面积大?

  生:观察 比较 说说你是怎么比较的

  师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。

  2、回顾平形四边形面积公式的`推导

  师:谁能告诉老师平形四边形面积公式推导过程

  生答后,师课件演示

  师:在这个过程,我们运用了一个什么数学思想。

  生:转化

  师板书:转化

  师:现在,我们已经掌握了几种图形的面积公式了呢?

  生答后,师简要小结

  3、设疑,引入新课

  小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识

  师板书:三角形的面积

  二、探究新知

  1、知识猜想

  师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?

  生讨论、作答(可能和底、高有关)

  2、动手实践

  一组学生拿出直角三角形学具

  二组拿出锐角三角形学具

  三组拿出钝角三角形学具

  四组拿出任意三角形学具

  剪一剪、拼一拼,你能发现什么?

  师巡回检查、指导

  3、实践汇报

  各组汇报实践结果

  一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。

  二组:两个完全一样的锐角三角形也可拼成一个平行四边形。

  三组:两个完全一样的钝角三角形也可拼成一个平行四边形。

  四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。

  各组就实践汇报展开讨论。

  4、演示总结

  师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?

  出示课件(演示1两个完全一样的三角形拼成平行四边形)

  师引导生观察

  (1)、拼成的平行四边形和原三角形面积有什么关系?

  生:平行四边形面积是三角形面积的2倍。

  (2)、平行四边形的底和高与三角形的哪些部分有关?

  生:平行四边形的高等于三角形的高;

  平行四边形的底等于三角形的底

  师小结并板书

  平等四边形的面积= 底 × 高

  三角形的面积= 底 × 高 ÷ 2

  出示课件(演示2一个三角形剪拼成平行四边形)

  师:观察平行四边形面积与原三角形面积有何关系?

  生:相等

  师:平行四边形的底和高与三角形底、高有什么关系?

  生:平行四边形的底等于三角形的底

  平行四边形的高等于三角形的高的一半

  师小结并板书

  平行四边形面积= 底 × 高

  三角形面积= 底 × 高 ÷ 2

  三角形的面积=底×高÷2

  字母表示: S=ah÷2

  5、师生一起回顾三角形面积公式的推导过程

  6、基本练习

  师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?

  生:能

  师:好那大家帮他算一算

  生解答,师巡回检查

  强调:1、注意运用公式 2、注意面积单位

  三、巩固检测

  1、出示课件

  师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?

  生答、师订正

  师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?

  生独立完成

  师统一订正

  2、出示课件

  师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?

  生板演 师讲解订正

  四、回顾总结

  师:学完这节课,你都有些什么收获呢?

  生讨论、作答

  师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。

  附:【板书设计】

  三角形的面积

  平行四边形面积 = 底 × 高

  转化

  三角形面积= 底 × 高 ÷ 2

  S= a×h÷2

三角形的面积教学设计3

  一、导入新课:

  上节课我们去参观了王伯伯的养虾池,认识了平行四边形,学习了怎样计算平行四边形的面积,那平行四边形的面积公式是怎样的呢?(学生回答:平行四边形的面积=底×高)。谁能回顾一下,我们是怎样推导出平行四边形的面积公式的呢?(学生回答,教师总结)。今天我们再去参观一下张爷爷家的养蟹池吧。(课件出示情景图),根据这幅图,你能提出什么问题?(1号蟹池的面积是多少?……)一号蟹池的形状是一个什么图形?(三角形)那怎样求三角形的面积呢?下面我们就来研究一下。板书:三角形的面积

  二、探究新知:

  (一)操作引入

  1、提问:怎样求三角形的面积呢?我们能不能像推导平行四边形的.面积那样也设法把三角形转化成我们已经学过的图形呢?老师为大家准备了很多三角形,请大家以小组为单位研究一下,试着把三角形转化成我们学过的图形。(生小组讨论,师巡视指导)。

  2、汇报交流:不同方法的小组到前面演示,边拼边讲。(师选择三种图形贴到黑板上)。

  (二)公式推导

  1、咱班同学真了不起,小小的三角形竟然拼出了这么多的图形。那接下来我们一起来研究一下,这两个三角形拼成了一个什么图形呢?(长方形)。那长方形的面积怎样计算?(长×宽)。师在黑板上所贴长方形下面板书:长方形的面积=长×宽。

  2、黄颜色三角形的面积与这个长方形的面积有什么关系呢?(三角形面积是长方形面积的一半)。

  3、长方形的长与这个三角形的底是什么关系?板书

  4、长方形的宽与这个三角形的高是什么关系?板书

  5、那这个三角形的面积该怎样计算呢?(生答,师在长方形面积公式下板书——三角形的面积=底×高÷2)。

  6、是不是所有等底等高的三角形面积都是它所拼成图形的一半呢?

  7、操作验证(学生小组完成)

  结论:等腰直角三角形的面积是拼成的正方形面积的一半。

  钝角三角形的面积是拼成的平行四边形面积的一半。

  8、推导公式:生答:通过实验我们知道,等底等高的三角形是它所拼成图形面积的一半,所以三角形的面积=底×高÷2。

  三、拓展练习

  刚才大家的表现非常棒,自己就总结出了三角形的面积公式,那么根据公式,谁来说一下,要求三角形的面积,必须知道哪几个条件?(底和高)。

  1、下面我们就将1号蟹池的面积计算一下吧。课件。(生解答,交流)

  2、比一比,看谁算的又快又准确。课件。生独立解答,全班交流。

  3、课件出示:一个没有标出底和高的三角形,怎样求出它的面积。(测量底和高),做书上第31页练习2。

  4、课件出示:火眼金睛辨对错。生用手势判断,并说明理由。

  5、聪明小屋:平行线中的三个三角形,哪个面积大?生讨论交流,说明理由。(一样大,因为它们等底等高)。

  四、课堂小结

  出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,20xx多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

  1、你从这节课学到了哪些知识?

  2、你认为计算三角形面积需要注意什么?

三角形的面积教学设计4

  一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。

  二、学习目标:

  知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。

  情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  三、教学重难点:

  教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。

  教学难点:理解三角形面积计算公式的推导过程。

  四、教学准备:

  课件、三角形纸片、剪刀等。

  五、教学过程:

  一、复习引入

  亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。

  让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?

  其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?

  通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah

  今天就让我们一起来学习这些平面图形中的三角形的面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。

  二、新课探究

  请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。

  请先看操作要求。

  操作要求:

  1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。

  2.按照商讨的方案,动手操作,验证商讨方案。

  3.根据操作过程,组内说清楚怎么操作的,怎么得到三角形的'面积计算方法。

  现在请带着这样几个问题开始操作吧。

  问题:

  1.你们用两个怎样的三角形拼图?能拼出什么图形?

  2.拼出的图形的面积你会算吗?

  3.拼出的图形与原来的三角形有什么联系?

  请各小组选派一名同学来说一说。

  让学生按照问题去说,一边说一边指着图形。

  现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。

  拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。

  拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。

  拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。

  同学们那你们现在能得出三角形的面积计算公式吗?

  大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?

  这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。

  同学们现在你们知道三角形的面积该怎么计算了吗?

  那现在老师考考大家。

  三、巩固练习

  请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。

  同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。

  同学们真棒,会计算红领巾的面积了。

  看来大家掌握地还不错,那同学们老师再考考大家一点简单的。

  二.我会填

  (1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?

  (2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。

  三.我是小法官。(对的打“?”,错的打“×”)

  (1)两个直角三角形一定可以拼成一个长方形。

  (2)两个三角形的面积相等,形状一定也相同。

  (3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。

  同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?

  四、课堂小姐

  同学们,通过这节课的学习你有什么收获?

  同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。

  同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。

  今天的课就上到这,同学们再见。

  六、布置作业:数学课本第93页习题。

  七、板书设计:三角形的面积

  学生作品展示

  三角形的面积公式:S=ah÷2

  教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。

三角形的面积教学设计5

  教学目标:

  1、知识与技能:

  (1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  (2)培养学生应用已有知识解决新问题的能力。

  2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:三角形面积公式的推导过程。

  教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

  教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备: 每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

  教学过程:

  一、创设情境,揭示课题

  师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)

  教师提出问题:

  ⑴红领巾是什么形状的?(三角形)。

  ⑵你会算三角形的面积吗?

  师:这节课我们一起来学习探索三角形面积的计算方法。

  板书:三角形的面积

  [设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]

  二、探索新知

  1、寻找思路:(出示一个长方形)

  师:(1)长方形面积怎样计算?

  (2)怎样可以把这个长方形平均分成两份?

  有三种方法:

  方法一:方法二: 方法三:

  师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)

  每个三角形面积与原长方形的面积有什么关系?

  [设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]

  生:长方形的面积=长×宽

  生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。

  板书:三角形的面积=底×高÷2(直角三角形)

  师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一起来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)

  接着出示思考题:

  (1)将三角形转化成学过的什么图形?

  (2)每个三角形与转化后的图形有什么关系?

  [设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]

  2、分组操作、讨论,合作学习。

  (1)提出操作和思考要求。

  学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。

  小黑板出示讨论问题:

  ①用两个完全一样的三角形拼一拼,能拼出什么图形?

  ②拼出的图形的面积你会计算吗?

  ③拼出的图形与原来三角形有什么联系?

  (2)学生以“四人小组”为单位进行操作和讨论。

  [设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]

  平移

  旋转180°

  合拼

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)

  [设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]

  (3)学生上讲台板演。

  ①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)

  可能出现以下情况:(用两个完全一样的三角形摆拼)

  (两锐角三角形) (两钝角三角形) (两直角三角形)

  平行四边形平行四边形长方形

  ②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。

  师:通过动手操作,你们发现了什么?

  引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)

  师:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  生:每个三角形的面积是拼成的平行四边形的面积的一半。

  生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)

  [设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]

  3、讨论与归纳公式

  (1)讨论:(小黑板出示问题)

  ①、三角形的底和高与平行四边形的底和高有什么关系?

  ②、怎样求三角形的面积?

  ③、你能归纳出三角形的面积计算公式吗?

  [设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]

  (2)归纳公式。

  学生讨论、汇报:

  因为:三角形面积=拼成的平行四边形面积÷2

  所以:三角形面积=底×高÷2

  教师板书:三角形面积=底×高÷2

  师:为什么要除以2?

  生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半

  师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

  结合学生回答,教师板书:s=ah÷2

  [设计意图:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?” “为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]

  4、看书质疑。

  师:你能说说,课本中是怎样得出三角形的面积计算公式的?

  (充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)

  师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?

  如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)

  三、应用新知,解决问题

  师:现在同学们能帮老师解决问题了吗?

  1、计算一条红领巾的面积。

  师:你能估算出这条红领巾的底和高各是多少吗?

  生:……

  师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?

  学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。

  师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)

  12.5 cm

  2、独立完成p85做一做。

  学生板演,教师点评。

  [设计意图:应用三角形的'面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]

  四、深化理解、应用拓展

  1、课本86页的练习第1题。 (课件出示)

  师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

  (让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

  2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。

  师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?

  (先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)

  3、判断题

  (1)三角形面积是平行四边形面积的一半。 ( )

  (2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )

  (4)等底等高的两个三角形,面积一定相等。 ( )

  (5)两个三角形一定可以拼成一个平行四边形。 ( )

  4dm

  2。5dm

  3dm

  4、求右图三角形面积。

  (要计算上图的三角形面积,强调三角形的底和高一定是对应的。)

  5、课本86页第3题:已知一个三角形的面积和底

  (如右图),求高。

  师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?

  (生讨论汇报,再计算、反馈。)

  6、做课本86页第4题(然后汇报、评讲。)

  要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?

  [设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]

  五、总结

  师:今天这节课,我们主要学习了什么知识?你有什么收获?

  (小出示)让学生说一说图意:

  生:……

  师:很好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。

  [设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]

  六、课外作业

  课本第87页“练习十六”第5、6、7题。

  板书设计

  三 角 形 的 面 积

  平行四边形的面积=底×高

  s=ah÷2

  =100×33÷2

  =1650(cm)

  三角形面积=底×高÷2

  s=ah÷2

  教学反思:

  本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “教学活动”转化为“学习活动”,引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。

  一、小组结合动手操作

  在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

  二、引导学生发现问题、思考问题,培养合作精神

  在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“除以2”的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。

  三、应用公式解决生活中的问题

  新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

  此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识,从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。

三角形的面积教学设计6

  教学目标

  1、通过画图、观察、思考和计算,引导学生进一步体会三角形面积与它等底、等高的平行四边形的关系。

  2、让学生看图计算面积或先在图中测量必要的数据后计算面积,并应用公式解决简单的实际问题、发展空间观念。

  教学重难点

  应用公式解决简单的实际问题

  课前准备

  小黑板和多媒体展台

  教学过程

  一、复习导入

  1、口算:书P(17)、4

  (口算卡片出示)

  2、复习计算公式:

  (1)三角形面积的计算公式是怎样的?字母表达式呢?

  (2)为什么要“÷2”?拼成的`平行四边形的两个三角形有什么关系?(板图)

  (3)拼成的平行四边形的底和高与三角形的底和高有什么关系?

  (4)中一个三角形的面积与平行四边形的面积有什么关系?

  3、揭题“三角形面积的计算”。

  二、探究新知

  1、完成练习三P(17)、5

  (小黑板出示)

  (1)、问:平行四边形的面积计算公式是怎样的?平行四边形的面积与什么有关?

  (2)、观察、思考:图中哪几个三角形的面积是平行四边形面积的一半?为什么?(可采用小组讨论的方式)

  (3)、汇报、交流,师适当提示小结。

  2、完成练习三P(17)、6

  (1)鼓励学生独立画图。

  (2)思考:

  A、每个小方格表示1平方厘米,你还知道些什么?

  师生活动

  思考与调整

  B、画出的三角形的面积是9平方厘米,那么三角形的底和高必须满足什么条件?

  C、要使底和高的乘积是18,底和高分别是多少呢?

  (3)、师适当小结。

  3、补充习题(小黑板出示)

  有一块三角形菜地。底是20米,高是18米,王师傅打算每平方米种4棵大白菜,这块菜地一共可收成多少棵大白菜?

  (1)、让生试做。

  (2)、让生说说解题思路。

  (3)、集体订正。

  4、完成练习三P(18)、9

  问:测量时要注意些什么?

  明确:红领巾要拉直,高的确有讲究,一次不够测量要注意,要有人记录数据。

  5、完成练习三P(18)、10

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  6、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  三、巩固深化

  全课小结。

  作业:练习三P(18)7、8

  教学得与失:

  课题

  梯形面积的计算

三角形的面积教学设计7

  教学内容:第75页及练习十八1-4题

  教学要求:

  1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

  2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

  3、在指导操作过程中,引导学生运用转化的方法探索规律。

  教学重点:三角形面积计算公式的推导。

  教学难点:理解公式中除以2的道理。

  教具:准备三种类型的三角形,每种2个完全一样,投影片若干。

  学具:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

  教学过程:

  一、复习铺垫

  1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

  2、(幻灯出示)口答:计算图形面积

  二、导入新课

  幻灯出示一个三角形

  提问:它是一个什么图形?

  它的底和高分别是多少?

  它的面积怎样算呢?板书课题:三角形面积的计算。

  三、讲授新课

  (一)、用数方格的方法计算三角形的面积。

  幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

  得出用数方格的方法计算三角形的面积不准确,又很麻烦。

  质疑:怎样计算三角形的面积呢?

  (二)、通过操作总结三角形的面积计算公式。

  1、从直角三角形推导。

  我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

  (1)让学生动手拼,教师将学生拼出的图形一一展示出来。

  (2)这些图形中哪些图形的面积你们会算?

  (3)每个直角三角形的.面积与拼成的长方形和平行四边形的面积有什么关系?

  教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

  2、从锐角三角形推导。

  (1)让学生试拼,可以相互讨论。

  (2)教师指导,突出旋转和平移。

  (3)每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

  教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

  3、从钝角三角形推导。

  (1)学生操作。

  (2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

  4、归纳总结规律。

  通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

  (1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

  (2)这个平行四边形的面积和三角形的面积有什么关系?

  得出:三角形的面积=底×高÷2

  (3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

  板书:S=ah÷2

  (三)、运用面积公式计算三角形的面积。

  1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

  2、出示例题让学生试做。

  说一说计算三角形面积为什么要除以2?

  3、看书质疑。

  4、做一做书本第77页

  四、课堂小结

  提问:1、这节课我们主要研究什么?

  2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

  3、要求三角形面积必须知道什么?怎样求?

  五、巩固练习

  练习十八1、3(1)

  六、课堂练习

三角形的面积教学设计8

  教材分析三角形的面积计算直接要求学生将三角形转化为已学过的图形推导出面积计算公式。

  学情分析是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。

  教学目标

  1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

  2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。

  3、培养学生的'分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。

  教学重点

  在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

  教学难点

  培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学准备教师:红领巾,直角三角形、锐角三角形和钝角三角形硬纸片各一对。

  学生:直角三角形、锐角三角形和钝角三角形硬纸片各一对,尺子,练习本。

  教学过程

  一、复习准备:

  1、教师:同学们,前面我们已经学了哪些平面图形的面积计算公式?

  谁能说说长方形和平行四边形的面积计算公式是怎样的?随着学生的回答板书:

  长方形的面积=长×宽。

  平行四边形的面积=底×高。

  2、出示红领巾。

  (1)教师:这条红领巾是什么图形,它的面积是多少?你能猜一猜吗?

  (2)教师:同学们猜了那么多答案,哪个是正确的呢?我们需要计算后才能作出正确的判断。今天这节课,我们就一起来研究三角形面积的计算。板书课题:三角形面积的计算。

  二、合作探究:

  1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?

  2、探究三角形面积计算公式。

  教师:我们学习过哪些求面积的方法?(数方格和转化的方法)

  教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。

  ①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)

  ②如果是用拼摆转化的方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)

  三、探讨交流。

  1、组织全班学生进行交流,说明推导公式的过程。

  2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2。

  3、让转化小组说明推导的公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。钝角三角形和直角三角形的面积公式也一样。

  4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。

  5、引导转化小组学生总结三角形面积的计算公式,同步板书:

  两个相同的三角形=一个平行四边形。

  平行四边形的面积公式=底×高。

  三角形的面积公式=底×高÷2。

  用字母表示公式:s=ah÷2。

  6、教学例题2。

  四、巩固练习。

  (1)解答练习题"做一做"。之后教师指定学生回答,并集体订正。

  (2)回顾:这节课我们共同研究了什么?怎样求三角形的面积?三角形的面积计算公式是怎样推导出来的?

三角形的面积教学设计9

  教学内容:

  人教版五年级上册84----85页

  教材分析:

  三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。

  学情分析:

  学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。

  教学目标:

  1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

  2、通过操作使学生进一步学习用转化的思想方法解决新问题。

  3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

  4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

  教学重点:

  理解并掌握三角形面积的计算公式。

  教学难点:

  理解三角形面积的推导过程。

  教法与学法:教法:

  演示讲解、指导实践。

  学法:小组合作、动手操作。

  教学准备:

  三角形卡片、多媒体课件

  教学过程:

  一、情境引入

  师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

  [设计意图]通过情境的.创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。

  二、探究新知

  1、复  师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

  师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

  [设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。

  2、第一次操作实践

  师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)

  3、交流反馈

  师:同学们都拼好了,谁来说说你是怎样拼的?

三角形的面积教学设计10

  教学目标

  及重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备(含资料辑录或图表绘制)

  板书设计

  教后记

  教和学的过程

  内容教师活动学生活动

  一、练习

  二、总结一、第5题

  可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

  二、第6题

  要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的`一半。

  五、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。

三角形的面积教学设计11

  一、教学目标

  1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

  2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

  3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

  二、教材分析

  三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

  三、学校及学生状况分析

  我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的程度等也会出现差异。

  四、教学设计

  (一)由谈话导入新课

  师:我们已经学过长方形、正方形、平行四边形面积的计算公式。还记得它们的面积公式吗?(一人回答)还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

  师:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

  师:谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的举手。

  师:今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。

  [板书课题:三角形面积]

  (二)探究活动。

  师:根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]

  师:下面我们将按小组来探究三角形面积的计算公式。

  (教师介绍学具袋中的学具,并出示探究活动的目标、建议与思考,见下表)

  (学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

  师:谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。

  生1:我们是直接用两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式。

  生2:我们小组是用一个三角形折成长方形后推导出计算公式的。

  生3:我们是将一个三角形用割补法进行推导的。

  ……

  师:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?

  生:三角形的面积=底×高÷2 s=a×h÷2 (在学生叙述时,教师板书)

  师:刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢语言再来说一说三角形面积公式的意义。

  师:不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?

  师:下面我们运用三角形的面积计算公式解决一些具体的问题。

  (巩固练习略)

  五、教学反思

  本节课是围绕着“通过学生发现三角形面积与已学图形面积的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子。如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的`计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

  这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

  六、案例点评

  本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

  教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

  通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

三角形的面积教学设计12

  教学内容:

  九年制义务教育课本数学五年级第一学期p84—85。

  教学目标:

  1、理解三角形面积计算公式的推导过程。

  2、 掌握三角形面积的计算方法。

  3、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力。

  4、培养学生在生活实际中发现问题、独立思考、创新思维,用旧知识转化为新知识来解决新问题的能力。

  教学重点:

  理解三角形面积计算公式的推导过程。

  教学难点:

  理解三角形面积是同底(长)等高(宽)长方形面积的一半。

  教学准备:

  教学软件、三角形学具。

  教学过程:

 一、复习铺垫。

  1、数一数下图中有几个直角三角形。

  2、我们学过计算哪些图形的面积?(长方形和正方形)

  怎么计算他们的面积?

  根据学生回答板书:

  正方形的面积=边长×边长

  长方形的面积=长×宽

  3、出示:你会计算它的面积吗?

  10 3

  4 4

  103 10

  想这样将上图通过剪拼成一个长方形来计算面积的方法,我们称为割补法。

  二、创设情景,引入新课。

  师:让天更蓝、水更清、地更绿,二十一世纪是以环保为主题的世界。我校正在开展创建“绿色学校”的活动,我们五(2)班的同学也积极投入到这项活动中,认养了校园里的一块地,要在这块地铺上草坪。同学们来到实地考察地形。猜猜看,他们想了解这块地的那些情况?(电脑演示)

  根据学生回答板书:三角形面积

  师:你会计算它的面积吗?你会计算那些图形的面积?

  师:能不能把三角形转化成学过的图形呢?

  二、动手操作,推导公式。

  1 请学生从老师提供的材料中,任意选取一个或两个三角形,以小组为单位,通过剪一剪、拼一拼、折一折,看能不能把三角形转化成我们已经学过的图形。

  根据学生汇报媒体演示:

  (1)两个直角三角形拼成一个长方形。

  (2)两个锐角三角形剪拼成一个长方形。

  (3)两个钝角三角形怎么拼呢?先把一个钝角三角形旋转一下,你发现什么?学生会发现两个钝角三角形能剪拼成一个长方形。

  2 师提问:

  (1)拼成的长方形面积与原来每个三角形的面积有什么关系?

  (2)长方形的长和宽分别是原三角形的那部分?

  媒体演示后板书:s长= 长× 宽

  s三=底 × 高÷2

  (3)三种情况的分析。

  钝角三角形、锐角三角形都要通过剪拼的方法转化成长方形,那么直角三角形可不可以也用剪拼的方法转化成长方形?

  学生讨论后交流,演示。(电脑演示)

  对,所有的三角形都能通过剪拼的方法转化成长方形,而直角三角形比较特殊,它不剪拼也能转化为长方形。

  3 师:除了用剪拼的方法将两个三角形转化成长方形外,还有没有其他方法呢?请大家先分组讨论、操作,再汇报。

  师:你是怎么转化的?拼成的图形与原三角形的面积有什么关系?长方形的长与宽是原三角形的哪部分?

  媒体演示:

  (1)将一个直角三角形折成长方形。

  (2)将一个锐角三角形剪拼成长方形。

  都同样得出三角形的面积=底 × 高÷2。

  师:如果用母s表示三角形的面积,用字母a表示三角形的底,用字母h表示三角形的高,那么三角形的面积公式可以写作s= a×h ÷2。

  问:同学们,根据公式,要求三角形的面积需要知道哪些条件?

  (三角形的`底和高)

  三、公式运用,巩固练习。

  1 通过同学们自己动手操作,我们已经找出了三角形面积的计算公式,现在我们来算一算课的一开始认养的那块土地面积好吗?

  媒体演示将土地标上底和高,请学生算出面积。

  2 再请大家看这一题。

  出示例1 一条红领巾的底边长100厘米,它的高33厘米,求红领巾的面积。

  指导学生的书写格式。

  学生尝试练习,再看书核对。

  3 计算下面三角形的面积。(单位:厘米)

  1212 20xx

  7

  14 8 10

  4.拓展练习。

  电脑演示:同学们,你们知道上海将在20xx年申办什么?世博会。我们的城市将以新的面貌迎接这次盛会,请你想办法把街道两旁的旧建筑换新颜。你有什么好办法?可以给旧建筑加顶。

  问:加上去的彩钢板是什么形状?要几块?电脑显示各种形状的彩钢板。供学生选择。(电脑显示三角形的底和高)学生再计算面积。算对了,彩钢板就贴在旧建筑顶上。

  四、总结。

  今天同学们通过自己动手,学会了什么?

  附板书:

  三角形的面积

  s正=a×a

  s长= 长× 宽

  s三= 底× 高÷2

  s = a×h ÷2

三角形的面积教学设计13

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点:理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:理解三角形面积公式的推导过程.

  教学过程:

  一、激发

  1.出示平行四边形

  提问:

  (1)这是什么图形? 计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)

  师总结:平行四边形面积=底×高

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究“三角形的面积”(板书)

  二、指导探索

  (一)推导三角形面积计算公式。

  1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)

  分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?

  2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)

  3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  4、用直角三角形推导

  (1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

  (2)拼成的这些图形中,哪几个图形的面积我们不会计算?

  (3)利用拼成的长方形和平行四边形,怎样求三角形面积?

  (4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)

  5、用锐角或者钝角三角形推导。

  (1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。

  (2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。

  (3)两个完全一样的钝角三角形能用刚才的.方法来拼吗?学生实验,教师巡回指导。

  问题:通过刚才的操作,你又发现了什么?

  引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半

  6、归纳、总结公式。

  (1)通过以上实验,同学们互相讨论一下,你发现了什么规律?

  (2)汇报结果。

  引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。

  ③这个平行四边形的底等于三角形的底。

  ④这个平行四边形的高等于三角形的高。

  7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以 2”?(强化理解推导过程)

  三角形面积=底×高÷2

  8、教学字母公式。

  引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

  (二)、应用

  1、教学例题:

  红领巾分底是 100cm,高 33厘米,它的面积是多少平方厘米?

  ①读题。理解题意。

  ②学生试做。指名板演。

  ③订正。提问:计算三角形面积为什么要“除以2”?

  2、完成做一做

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  四、反馈练习

  (一)填空

  (1)一个三角形的底是4分米,高是30厘米,面积是( )平方分米。

  (2)一个三角形的高是7分米,底是8分米,和它等底等高的平行四边形的面积是( )平方分米。

  (3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是( )

  (4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是( )平方分米,三角形的面积是( )平方分米。

  (5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是( )米;如果平行四边形的高是10米,那么三角形的高是()米。

  (二)判断

  1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ×)

  2、等底等高的两个三角形,面积一定相等。 (√ )

  3、两个三角形一定可以拼成一个平行四边形。 ( ×)

  4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

  (5)两个面积相等的三角形可以拼成一个平行四边形。(×)

  (6)等底等高的两个三角形,面积一定相等。( √ )

  (7)三角形面积等于平行四边形面积的一半。(× )

  (8)三角形的底越长,面积就越大。(× )

  (9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√ )

  五、作业:85页做一做和练习十六第1、2、3、4题

  板书设计:

  三角形面积的计算

  因为:平行四边形的面积=底×高, 例1… …

  三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

  所以三角形面积=底×高÷2

  S=ah÷2

三角形的面积教学设计14

  一、教学内容:

  《义务教育课程标准实验教科书。数学》(西师版)五年级第九册。

  二、教学目标分析

  (1)使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积。

  (2)通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念。

  (3)使学生明白事物之间是相互联系,可以转化和变换的。

  三、教学要点分析

  教学重点:理解、掌握三角形的面积计算公式

  教学难点:理解三角形面积公式的推导过程

  四、教学策略设计

  (1)导入新课时激励学生求新知——诱导自主学习。

  (2)探索新知时鼓励学生自学尝试,合作讨论——进行自主学习。

  (3)内化新知创新设疑,讨论质疑——创新自主学习

  (4)巩固新知时激励学生自主解答,讲解思路——巩固自主学习。

  (5)教师课前准备:多媒体计算机课件,为学生每组准备两个完全一样的直角三角形、两个完全一样的.等腰直角三角形,和两个完全一样的钝角三角形。

  五、过程设计

  本课教学总时间为40分钟。教学过程主要围绕三角形面积公式的推导、应用来展开的。教学环节可分为情境创设、操作交流、练习反馈和全课总结。

三角形的面积教学设计15

  教学内容:练习三第4-10题及思考题

  教学目标:

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学过程:

  一、第5题可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

  二、第6题要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  五、思考题每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  第5课时:梯形面积的计算

  教学内容:第19页例6以及相应的试一试和练一练

  教学目标:

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学重点:理解并掌握梯形面积的计算公式

  教学难点:理解梯形面积公式的推导过程

  教学过程:

  一、复习导入:

  1、回顾三角形面积公式的推导过程

  2、导入:今天我们继续运用这种方法来研究梯形面积的计算。

  二、探究新知:

  1、教学例6:

  (1)出示例6:

  师:用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

  (2)小组交流:

  你认为拼成一个平行四边形所需要的.两个梯形有什么特点?

  要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

  师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

  得出以下结论:

  这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。

  这个平行四边形的底等于梯形的上底+下底

  这个平行四边形的高等于梯形的高

  因为每个梯形的面积等于拼成的平行四边形面积的一半

  所以梯形的面积=(上底+下底)×高÷2

  板书如下:

  平行四边形的面积=底×高

  2倍一半

  梯形的面积=(上底+下底)×高÷2

  (4)用字母表示三角形面积公式:S=(a+b)h÷2

  三、巩固练习:

  1、完成试一试:

  2、完成练一练:

  (1)学生计算后提问:用上、下底的和乘高后,为什么还要除以2?

  (2)结合直观的图形或教具演示,简单介绍横截面的含义,再让学生结合公式进行计算。

  四、全课总结:

  师:通过今天的学习有哪些收获?

  板书设计:梯形面积的计算

  转化

  已学过的图形新图形

  拼摆

  因为平行四边形的面积=底×高

  2倍一半

  所以梯形的面积=(上底+下底)×高÷2

  课后札记:

【三角形的面积教学设计】相关文章:

三角形的面积教学设计03-28

三角形的面积教学设计04-23

数学《三角形的面积》教学设计07-09

三角形的面积教学设计15篇04-27

三角形的面积教学设计大全[15篇]10-23

三角形的面积教学设计[实用15篇]08-25

三角形的面积教学设计15篇(精华)10-31

梯形的面积教学设计06-08

圆的面积的教学设计09-29