最新《三角形的内角和》教学设计优秀
作为一位兢兢业业的人民教师,可能需要进行教学设计编写工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。怎样写教学设计才更能起到其作用呢?下面是小编帮大家整理的最新《三角形的内角和》教学设计优秀,仅供参考,欢迎大家阅读。
最新《三角形的内角和》教学设计优秀1
背景分析:
在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。
教学目标:
1、通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。
2、会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。
3、体会数学学习的魅力,体验探究学习的乐趣。
教学重难点:
探索和发现三角形的内角和等于180°。
教具准备:
多媒体课件、一副三角板、量角器、三角形纸片。
学具准备:
每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。
教学过程:
一、导入课题
1、故事引入,激发兴趣
同学们,今天,老师给大家带来一个小故事,想听吗?
课件显示数学家——帕斯卡的图片
师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。
师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?
揭示并板书课题:三角形的内角和。生齐读课题。
2、明确目标
学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)
3、效果预期
带着这些问题,我们一起走进今天的.探究之旅,老师期待大家的精彩表现,大家准备好了吗?。
〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学习兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。
二、民主导学
1、任务呈现
(1)认识内角、内角和
师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形。
师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。
师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3
师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。
师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(平角)平角是多少度?(180°)
师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?
师:我们现在开始验证好吗?动手之前,请听好活动要求
屏幕出示要求,指名学生读:
想一想,你打算怎样验证,在小组内交流你的想法,共同确定一种验证方法;
想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;
想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;
验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。
2、自主学习
学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)
3、展示交流(提示:汇报时,要说清楚你研究的三角形的类型)
师:来吧孩子们,该到全班交流的时候了。哪个小组愿意先把你们的成果与大家一起分享。
A、剪拼法(撕拼法)
这个小组通过剪拼得出三角形的内角和是180
B、折拼法
刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个平角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成平角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试
C、测量法
用量的方法的小组,你们得出的三角形的内角和都是180°,不是180°的请举手,一样的三角形为何测量得出的结果不一样,是什么原因呢?(误差)由于测量工具测量方法等原因,会难免会有误差,正因为这些误差,导致测量结果五花八门,各不相同,现在你们的疑惑解开了吗?
刚才我们猜想三角形的内角和可能是180°,现在你想说什么?(一定、肯定、绝对、百分之百)
小结:通过刚才同学们的验证,得出了什么结论(板书:结论)三角形的内角和是180°。大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,都把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,都用了转化的策略(板书:转化)。希望大家能把转化的方法运用到今后的学习中去,去解决更多的数学问题。
〖评析〗探索三角形内角和的过程,既是解决数学问题的过程,也是培养学生动手实践能力和科学精神的过程。在这一过程中,学生既经历了新知的形成过程,又获得了成功的体验。
4、数学文化介绍
你们想知道12岁的帕斯卡是用什么方法研究的吗?谁来猜一猜?
生:
师:(边演示边介绍)他把长方形分成两个完全相同的直角三角形,其中一个直角三角形的内角和就是180°
师:接下来,他就想其他三角形的内角和是不是180°呢?于是,他任意画了一个三角形并做高,谁看懂他的意思了?
生:分成了两个直角三角形。
师:你真会观察,请大家看,∠1+∠2=
生:90°
师:∠3+∠4=
师:那么这个三角形的内角和就是
生:180°
师:由此说明任意三角形的内角和都是180°。你们觉得帕斯卡的方法怎么样?
生:巧妙!
师:是的,他的方法太巧妙了。今天同学们用自己的聪明才智也研究出了三角形的内角和是180°,老师相信你们的父亲也会为你们感到骄傲!下面,我们就用这个结论,来解决一些数学问题。
〖评析〗通过对数学文化的介绍,让学生了解帕斯卡的证明过程,既开阔了学生的知识视野,要引导学生的思维由具体到抽象,培养了思维的严谨性,同时激发了学生对数学家的崇敬之情,让学生体验到数学逻辑的论证之美,进而产生了对数学的热爱。
5、练习
(1)猜一猜:在一个三角形中,∠1=30°,∠2=50°,∠3等于多少度?师:让学生回答:说说怎么想的?
(2)2、算一算:三角形每个内角是多少度?师:课件出示后,请大家拿出答题纸快速解答下面的问题:
求出等边三角形每个角的度数?
等腰三角形顶角96°,底角是多少度?
直角三角形的一个锐角是40°,另一个锐角是多少度?
〖评析〗练习设计科学合理,层次清晰,针对性强,让学生较好地巩固了所学知识;拓展性练习不仅加深了学生对新知识的理解和掌握,而且要满足了不同层次学生的认知需要,同时培养了学生思维的灵活性,促进了思维的发展。
三、检测导结(下面进入检测环节,大家愿意接受挑战吗?)
1、目标检测(见检测卡)
2、结果反馈
集体订正
课外作业:那么四边形、五边形、六边形的内角和分别是多少呢?作为课后作业,课后探究。
3、反思总结
回顾一下今天学的内容,你有什么收获?
大家真的非常了不起,不仅学到了数学知识,更重要的是经历了猜想、验证、得出结论、应用的科学探究的过程,老师送给大家一句话:“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的。——毕达哥拉斯”
其实在历史上有许多数学家都曾经研究过三角形的内角和,最早研究的谁,你们知道吗?
生:帕斯卡
师:NO,另有其人,如果大家感兴趣,课后可以去查一查。
〖评析〗引导学生回顾本节课所学知识,有助于对所学内容的内化和提升。同时,将数学文化自然延伸到到课外,使数学文化贯穿整节课的始终。
最新《三角形的内角和》教学设计优秀2
教学内容:
义务教育课程表准教科书数学(人教版)四年级下册85页。例题5。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备:
多媒体课件、学具。
教学过程:
一、激趣引入
(一)认识三角形内角
1、我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题。)
2、请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
(二)设疑,激发学生探究新知的心理
1、请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
学生安要求画三角形。
2、问:有谁画出来啦?
(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!
二、动手操作,探究新知
(一)研究特殊三角形的内角和
1、请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)
学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)
这个三角形各角的度数。它们的和是多少?
学生回答:是180°。
追问:你是怎样知道的?
生:90°+45°+45°=180°。
把三角形三个内角的度数合起来就叫三角形的内角和。
板题:三角形内角和
2、(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
90°+60°+30°=180°。
3、从刚才两个三角形内角和的计算中,你发现什么?
这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和
1、猜一猜。
猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2、操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
1、所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!
2、每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示
组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长。
量一量,完成表格。
三角形的名称
内角和的度数
锐角三角形
直角三角形
(2)小组汇报结果。
请各小组汇报探究结果。
(三)继续探究
没有得到统一的'结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
1、用拼合的方法验证。
小组内完成,活动的要求同上。
拼一拼,完成表格。
三角形的名称
是否可以拼成平角
锐角三角形
直角三角形
对角三角形
2、汇报验证结果。
先验证锐角三角形,我们得出什么结论?
(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
直角三角形的内角和也是180°。
钝角三角形的内角和还是180°)。
3、课件演示验证结果。
请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
我们可以得出一个怎样的结论?
(三角形的内角和是180°。)
(教师板书:三角形的内角和是180°学生齐读一遍。)
为什么用测量计算的方法不能得到统一的结果呢?
(量的不准。有的量角器有误差。)
三、解决疑问。
现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
在一个三角形中,有没有可能有两个钝角呢?
(不可能。)
追问:为什么?
(因为两个锐角和已经超过了180°。)
问:那有没有可能有两个锐角呢?
(有,在一个三角形中最少有两个内角是锐角。)
四、应用三角形的内角和解决问题。
1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、85页做一做:
在一个三角形中,∠1=140度,∠3=35度,求∠2的度数。
3、88页第9。10题(数学信息较为隐藏和生活中的实际问题)
4、89页16题。思考题
板书设计:
三角形内角和
180°180°180°
三角形内角和180°
最新《三角形的内角和》教学设计优秀3
教学内容:
本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。
教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。
教学目标:
1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件、各种三角形等。
学具准备:三角形、剪刀、量角器等。
教学过程:
一、出示课题,复习旧知
1、认识三角形的内角。
(1)复习三角形的概念。
(2)介绍三角形的“内角”。
2、理解三角形的内角“和”。
【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的'旧知识而且可以为新知识教学提供知识铺垫。
二、动手操作,探究新知
1、通过预习,认识结论,提出疑问
2、验证三角形的内角和
(1)用“量一量、算一算”的方法进行验证
①汇报测量结果
②产生疑问:为什么结果不统一?
③解决疑问:因为存在测量误差。
(2)用“剪一剪、拼一拼”的方法进行验证
①指导剪法。
①分别拼:锐角三角形、直角三角形、钝角三角形。
③验证得出:三角形的内角和是180°。
(3)用“折一折”的方法进行验证
①指导折法。
①分别折:锐角三角形、直角三角形、钝角三角形。
③再次验证得出:三角形的内角和是180°。
3、看书质疑
【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。
三、实践应用,解决问题:
1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。
2、求出三角形各个角的度数。(图略)
3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是
70°,它的顶角是多少度?
4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)
5、数学游戏。
【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。
四、总结全课、延伸知识:
1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?
2、知识延伸:给学生介绍一种更科学的验证方法——转化。
【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。
板书设计:三角形的内角和是180°
方法:①量一量拼角(略)
②拼一拼
③折一折
【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。
最新《三角形的内角和》教学设计优秀4
【教学内容】
《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》
【教学目标】
1、使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。
2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。
3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
【教学重点】
使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。
【教学难点】
通过多种方法验证三角形的内角和是180。
【教学准备】
课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。
【教学过程】
一、激趣导入,提炼学习方法
1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”
2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3、选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的'第二个问题。
4、导入新课。
图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)
二、动手操作,探索交流新知
1、分组活动,探索新知
根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。
量一量组同学发给以下几种学具:
折一折组同学发给上面的三角形一组。
拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。
在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。
2、多方互动,交流新知
师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。
(1)首先要求学生说一说你们小组是怎样进行探究的。
(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)
(3)请学生说说通过探究活动你们组得出的结论是什么。
师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?
引导这一组从探究的过程和结论与同学、老师交流。
师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。
同样引导这一组从探究的过程和结论与同学、老师交流。
3、思想碰撞,夯实新知
师:三个徒弟你们能说说谁的方法最好吗?
学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)
师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)
三、走进生活,提升运用能力
1、出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?
2、给你三根木条,能做出一个有两个直角的三角形吗?
四、总结
师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?
五、拓展新知,课外延伸
师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。
大屏幕出示:
能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?
最新《三角形的内角和》教学设计优秀5
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程:
(一)创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,今天老师还给大家带来了一个老朋友,请看,是什么?
生:三角形!
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?
(FLASH:生说完后师点击出第二个三角形,边说边点出度数)
[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?
[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是180度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生:……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
[U3]
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的.真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
最新《三角形的内角和》教学设计优秀6
【教材内容】
北京市义务教育课程改革实验教材(北京版)第九册数学
【教材分析】
《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。
【学生分析】
在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
【教学目标】
1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
【教学重点】
让学生经历“三角形内角和是180度”这一知识的.形成发展和应用的全过程。
【教学难点】
能利用学到的知识进行合情的推理。
【教具学具准备】
课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸
【教学过程】
一、学具三角板,引入新课
1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)
2、顾名思义一个三角形都有几个角呀?(三个)
3、认识内角
(1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?
(2)这个三角形内有几个内角?(三个)这个呢?(三个)
(设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)
二、动手操作,探索新知
(一)直角三角形内角和
ⅰ、特殊直角三角形内角和
1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
2、观察这两个三角形的度数,你有什么发现?
生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)
生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?
(课件):(1)90°+60°+30°=180°)
那么另一个三角板的三个内角的总度数是多少?
(生回答,师课件:(2)90°+45°+45°=180)
3、你指的哪是180度?(生:这三个内角合起来是180度)
4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)
5、这个直角三角形的内角和是多少度?另一个呢?
6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。
(师出示一个平角)问:平角是什么样的?
7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。
ⅱ、一般直角三角形内角和
1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。
2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。
(1)小组活动(2)汇报
哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)
三角形的种类
验证方法
验证结果
“量一量”的方法:
板书:有一点误差的度数
“剪一剪”的方法:
我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)
现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)
你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?
还有其他方法吗?
“折一折”的方法:
预设:①生:我是折的。师:怎样折的?你能给大家演示吗?
学生演示(课件:折的过程)
②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)
推理:
你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)
这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)
3、小结
(1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。
(2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)
(设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。)
(二)、锐角三角形、钝角三角形的内角和
1、请你们任意画一个钝角三角形,一个锐角三角形
2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?
3、学生模仿老师操作说理
4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。
师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是180°)。
(设计意图:引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。)
三、巩固新知,拓展应用
我们就用三角形的这一特性来解决一些问题
1、两个三角形拼成大三角形
(1)每个三角形的内角和都是少度?
(2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢
2、一个三角形去掉一部分
(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?
再剪去一个三角形呢?(课件演示)
你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。
(2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)
你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?
(3)如果五边形,你还能求出他的度数吗?
(设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。)
四、总结评价、延伸知识
通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?
师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。
(设计意图:帮助学生梳理本节课的知识脉络。)
最新《三角形的内角和》教学设计优秀7
教学内容:人教版小学数学第八册第85页例5及”做一做”
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想
3、在探索中体验发现的乐趣,增强学好数学的信心、
教学重点
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点:
验证所有三角形的`内角之和都是180°
教具准备:多媒体课件。
学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)
教学过程:
一、设疑引思
1、分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、
2、每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、
3、设问:老师为什么能很快”猜”出第三个角的度数呢?
三角形还有许多奥妙,等待我们去探索、<导入新课,板书课题>
二、探索交流,获取新知
1、量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、
2、折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度,初步验证”三角形的内角和是180°”的结论、
3、拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、
4、师利用课件演示将一个三角形的三个角拼成一个平角的过程、
5、验证:FLASH演示三种三角形割补过程
发现1:通过把直角三角形割补后,内角∠2,∠3组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于()度。
发现2:通过把钝角、锐角三角形割补后,三角组成了一个()角,而()角等于()度。所以锐角三角形和钝角三角形的内角和都是180度。
6、小结:刚才能过量一量折一折拼一拼,你发现了什么?
生说,师板书:三角形的内角和———180°
三、应用练习,拓展提高
1、书例5后”做一做”
思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)
2、下面哪三个角会在同一个三角形中。
(1)30、60、45、90
(2)52、46、54、80
(3)61、38、44、98
3、走向生活:
(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?
(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)
四作业:作业本
五全课总结
总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?
板书设计:三角形的内角和
三角形的内角和———180°
最新《三角形的内角和》教学设计优秀8
总课时数:
第15课时
教学目标:
1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180°”。
2、让学生学会根据“三角形的内角和是180°”这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学重点:
探索三角形内角和是180°
教学难点:探索三角形内角和是180°
教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。
教学过程:
一、交流展示
老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90°+60°+30°=180°,90°+45°+45°=180°
看了这2个算式你有什么猜想?
(三角形的三个角加起来等于180度)
二、自主探索
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的`度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。在撕之前要分别在三个角上标好角1。角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180°。
三、精讲点拔
三角形中,角1=75°,角2=39°,角3=()°
算一算,量一量,结果相同吗?
四、运用提升
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80°。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
2、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
可先猜想:两个三角形拼在一起,会不会它的内角和变成180×2=360°呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180°。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
五、达标作业
补充习题相关作业
【最新《三角形的内角和》教学设计优秀】相关文章:
《三角形内角和》教学设计10-02
三角形内角和教学设计08-15
三角形的内角和的教学设计09-01
三角形内角和教学设计15篇05-03
三角形的内角和教学反思06-28
四年级《三角形内角和》教学设计01-05
四边形内角和教学设计06-26
《和时间赛跑》优秀教学设计10-26
平移和旋转优秀教学设计11-10