数学面积的教学设计
作为一名默默奉献的教育工作者,就不得不需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。优秀的教学设计都具备一些什么特点呢?以下是小编为大家整理的数学面积的教学设计,仅供参考,大家一起来看看吧。
数学面积的教学设计1
[教学目标]
1、结合具体实例和画图活动,认识图形面积的意义
2、经历比较两个图形面积大小的过程,体验比较策略的多样性。
[教学重、难点]
1、体会面积的意义
2、比较两个图形的大小
[教学过程]
一、创设情境,导入新课
(一)拍手游戏
(二)比一比手掌面
二、初步感知,什么是面积
(一)认识物体的表面的面积。
1、找一找:现在让我们一起来找找身边物体的面。你找到哪些物体的面?
2、摸一摸:同学们找到了这么多物体的面,现在就来摸摸这些物体的面吧!
3、比一比:同学们,摸了这些物体的面,你们发现了什么?
师:刚才同学们发现物体的面有的大,有的小,我们把物体的表面的大小就叫做它的面积。(课件出示:物体的表面的大小就是它的面积。)
4、说一说:谁来说说其他物体的面积?
(二)认识封闭图形的'面积。
1、什么是封闭图形
2、辨一辨:(课件出示五个图形)师:请大家判断一下。下面的图形哪些是封闭图形,哪些不是封闭图形?(把不封闭的图形隐藏)这些封闭图形的大小就叫做它的面积。(课件出示)
(三)总结面积的意义。
师:现在你们知道什么是面积了吗?(课件先出示:物体的表面的大小就是它的面积。再出示:物体的表面或封闭图形的大小就是它们的面积。)全班齐读两遍。
(四)基本训练。(课件出示:课本41页练一练第1题。)
三、合作交流、比较面积
(一)(课件出示)探密游戏,激发比较的乐趣(比较长方形与正方形的大小)
(二)小组汇报。师:你们小组是用什么方法来比较的呢?
(三)师小结比较的方法,比一比哪种方法好
四、巩固练习
(一)小小设计师。(课本40页画一画)
以比赛的形式进行
1、明确比赛要求,创意要求:在方格中画3个不同的图形,使它们的面积都等于7个方格那么大。比一比,谁画得准确而有创意。
2、小组内交流作品,数数他的作品是不是占七格?然后欣赏他的作品!
3、投影展示作品,交流评价。
4、活动思考:通过这次活动,你发现了什么?(面积相同的图形,可以有不同的形状。)
(二)数一数;课本41页练一练第4题。(课件出示)
五、课堂总结
数学面积的教学设计2
预设目标:
使学生认识弧、圆心角和扇形。
教学重难点:
使学生认识弧、圆心角和扇形。
教学过程:
一 、复习:
1、一个圆的周长是18.84厘米,这个圆的面积是多少厘米?
2、一个环形花坛的外圆半径是5米,内圆半径是2米,它的面积是多少平方米?
二、新课
1、认识弧.
教师拿出圆规和直尺,先画一个虚线圆,在圆上取A、B两点,再用实线画A、B两点间的部分。(出示小黑板)
教师:请同学观察一下,这两点间的实线部分是在什么上画出来的?接着指出:圆上A、B两点之间的部分叫做弧,读做“弧AB”。然后让学生在练习本上先画一个虚线圆,再画一段弧,并让学生说一说什么是弧。
2、认识扇形
教师可在上面作图的基础上,用彩色粉笔画出半径0A、0B和弧AB(如书上右图)。指出:一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。并用彩色粉笔把扇形部分涂上色。强调涂色部分就是扇形,让学生也在练习本上画出扇形。
教师:我们看到扇形是由两条半径和一条弧围成的,谁能说一说扇形中三角形有什么不同?使学生认识到:三角形是由三条线段围成的,而扇形中有一条不是线段是弧,这条弧是圆的一部分。
3、认识圆心角。
教师在上面右图的基础上标出∠1,指出:像∠1这样,顶点在圆心上的角叫做圆心角。使学生认识到:圆心角是由两条半径和圆心组成的,所以圆心角的顶点在圆心上。教师可以在黑板上画出几个角,让学生判断哪些是圆心角。
教师接着在黑板上画一个圆,在圆上分别画出圆心角150度、30度、45度的'扇形,使学生明确:在同一个圆上,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形就越小。
4、课堂练习:
做练习四的第1——3题
创意作业:自己画一个扇形,标出圆心角的度数,半径。
数学面积的教学设计3
一、创设情境,学习新知。
1、师:让大家通过网络收集我国国土面积的一些数据,在这些数据中,有的数据后面有“万”,有的“亿”,为什么要这样表示呢?今天这节课我们一起来研究这个问题。
板书课题:国土面积大数的改写
2、出示中国地图。(并多媒体演示中国地图)
3、提问:我国的陆地面积约是多少平方千米吗?在学生回答的基础上,出示:9600000平方千米。
4、师:你还知道我国哪些省市自治区的土地面积?请说一说。多媒体出示四个数据:
(1)黑龙江省土地面积约450000平方千米。
(2)江苏省土地面积约是100000平方千米。
(3)新疆维吾尔自治区土地面积1660000平方千米。
(4)西藏自治区土地面积约1220000平方千米。
请同学们在地图上找一找,看一看,比一比。
学生活动:学生读一读、写一写、想一想并说出数据的特点。
二、结合实际背景,体会改写单位的必要性。
1、师:大家在读写这些数的时候,有些什么感受?
2、再比较分析一下课前我们收集的资料上的数据的特点,如果为了记录方便,这些数据可以怎么进行改写。
三、探究改写方法。
1、师:你知道这些数据的计数单位是什么吗?它们是以“一”为单位,一般以“一”为单位是不写计数单位的,怎么把这些单位是“一”的数进行改写呢?
2、分小组讨论,探究改写方法。
3、观察这些数据的基本特点,从中发现改写的基本方法9600000=960万450000=45万1660000=166万100000=10万1220000=122万10000000000=100亿300000000=3亿
学生活动:生先读出来,再改写。师:为什么同样的数据要用不同的方法表示?
(学生独立思考,由学生说一说是怎样想的。)
4、归纳大数改写的基本方法
教师活动:引导学生想;万位在右起第几位?整万的数位后面有几个0?亿位在右起第几位?整亿的数位后面有几个0?学生讨论后,由学生自己概括改写方法
(多媒体演示结论)
结论:把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就可以了。
把整亿的数改写成用“万”作单位的数,只要把后面的八个0去掉,加上一个亿字就可以了。
四、比较大小。
1、让学生思考一下,万以内的数的大小比较是怎么比较的,并在小组内交流。
2、然后让学生用自己的方法和语言表达出来,并集体交流。
五、试一试。
1、读出下面各数,并按从小到大的顺序排列。在排列大小之前,先让学生说说排列的方法。
2、将下面各数改写成以“万”为单位的'数。让学生说说改写的方法,然后独立完成。
3、将下面各数改写成以“亿”为单位的数。让学生说说改写的方法,然后独立完成。
六、练一练。
1、开发大西部。
练习本题时,可以先请学生说一说我国西部各省市自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的基础上再请学生改写成以“万”作单位的数。有条件的学校,还可以让学生收集一些西部地区的其他数据信息,以供学生间互相进行改写。
2、海洋资源。
练习时,可以让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。3、把下图中的点按数的大小从小到大连接起来。对于不同的数据比较,学生可以先统一写法,再比较;也可以直接进行比较,对于学生的不同方法,只要合理,教师都应给予肯定。
七、课堂小结
本节课你有什么收获?
回家给父母说一说,并利用网络、报刊、杂志收集生活中的大数,练习改写。
八、布置作业
1、教材第9页的1、2题
2、思维训练:伦敦20xx年人口约7188000人,改写成以“万”为单位的数该是多少?
九、板书设计
国土面积大数的改写
9600000=960万450000=45万1660000=166万100000=10万
1220000=122万
10000000000=100亿300000000=3亿
数学面积的教学设计4
【设计说明】
《圆环面积》是人教版义务教育课程标准实验教科书数学六年级上册第69页例2的教学内容。环形面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成环形的本质问题。圆环的面积教学,是通过一个例题来完成的,教材借助插图中的光盘帮助学生直观地认识圆环,为学生学习圆环的面积作了感性铺垫。
教学中我是这样设计的:首先安排了两道相关圆面积的计算题,让学生回顾圆的面积计算过程,为学习新知奠定基础。接着安排了认识生活中的圆环内容,让学生更多感受生活中的圆环,产生学习圆环的必要性。让学生通过画一画、剪一剪,建立环形的表象,体会环形的特点。然后设计提问:求圆面积必须知道什么?你能找到内圆和外圆的半径吗?
充分让学生的思维活跃,把环形真实地显露在学生眼前,再通过小组合作的讨论,得出环形的面积计算公式。再接着让学生自学例2的问题,引导学生对圆环面积计算方法进行比较、优化。最后在练习环节设计中,结合直观图像来引导学生理解和掌握圆环的面积计算方法。
【教学设计】
教学内容:人教版义务教育课程标准实验教科书数学六年级上册第69页例2。
教学目标:
1.认识生活中的环形,掌握环形面积的计算方法,提高学生自主探究的学习能力。
2.学生联系生活认识圆环,并通过自主探究、合作交流等方式理解和掌握圆环的面积计算方法。
3.培养学生学习数学的浓厚兴趣和与他人交流、分享学习成果的'良好习惯。
教学重点:探究圆环面积的计算方法。
教学难点:理解环形的形成过程,掌握环形面积的计算方法。
教具、学具准备:课件、圆纸片、剪刀、直尺、圆规。
【教学过程】
一、复习旧知,引入新知
1.计算圆的面积
(1)半径是5厘米
(2)直径8厘米
2.说一说圆的面积计算公式
二、自主探究,掌握方法
1.认识环形
(1)我们来欣赏一组美丽的图片。
(课件演示:环形花坛、奥运五环标志、光盘等环形图案)
(2)图片的形状和我们学过的什么图形很相似?(圆)
(3)教师拿出环形光盘说明:像这样的图形,我们称它环形或圆环。(环形)
(4)学生找生活中的环形。
2.建立环形表象
(1)利用手边的工具自己做出一个圆环。
(2)学生可利用工具剪出环形或画出环形。
3.发现环形特点
老师拿着学生制作的环形提问:
“这个环形,你是怎样得到的?”(从大圆中剪掉一个小圆)
(1)解释什么叫外圆半径和内圆半径。
(2)求环形面积是求哪部分面积?
(3)你怎样求这个环形的面积?
(要求学生先独立思考,再在小组内交流)
(4)师:谁能总结一下环形的面积是怎样计算的?
(学生讨论、交流、总结,教师点拨、总结,板书:环形的面积=外圆面积—内圆面积:S=πR2-πr2)
师:这道题你们会了,老师的黑板上还有一道例题,你们能帮助老师解决吗?
4.教学例2内容
光盘的银色部分是一个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生讨论。
(3)学生试做,指生演板。
(4)交流算法,学生将列式板书:
3.14×(6×6)-3.14×(2×2)
=113.04- 12.56
=100.48(平方厘米)
3.14×(6×6 -2×2)
=3.14×32
=100.48(平方厘米)
(5)比较两种算法的不同。
三、应用新知,解决问题
1.计算阴影部分的面积
(半个环形:R=10厘米,r= 6厘米)
2.判断正误
(1)在圆内剪去一个小圆就得到一个圆环。()
(2)环宽=外圆半径-内圆半径。()
3.一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其它的部分是草坪。草坪的占地面积是多少?
四、反思体验,总结提高
学生畅谈本节课的学习收获,教师适当总结归纳。
【教学反思】
《圆环的面积》教学时,我非常关注学生的生活经验和已有的知识体验。由于学生已经掌握了圆的面积的计算方法,所以本节课的重点是如何激发学生兴趣,引导学生通过操作、交流、讨论、合作学习等方式,自主参与环形面积的计算这一知识的获取过程。在本节课中,我注重引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。
一、在直观演示中,培养学生的思维能力
1.深入了解学生,找准教学的起点
这节课是在学生掌握了求圆的面积基础上进行教学的。而且我事先让学生认识生活中的圆环,并用硬纸板做了环形进行演示,让学生获得直接的经验。大部分同学都能求环形的面积,但同学们对环形特征的认识还不够深刻。因此,我从认识环形的特征入手来完成本节课的教学重点,让学生把做环形的过程说出来,在表述的过程中,自然而然地说出了圆环的特征。这样,学生就学得积极主动,学习效果好。
2.深入钻研教材,促进学生思维的发展
在教学中,我深入钻研教材,充分挖掘教材中蕴含的数学思想与方法,提高学生学习效果。在学生认识环形之后,我有意让学生通过尝试自己练习求圆环面积,总结圆环面积的字母公式,认识到环形面积大小的最根本因素是大、小圆的半径。这样的教学,较好地促进了学生思维的发展,使学生在解决实际问题时,能抓住问题的本质。
二、在动手操作中,培养学生的观察能力
师:请同学们拿出做好的环形,说说你是怎样去做的?
生1:在硬纸板上,我先用圆规画了一个大圆,然后缩短圆规两脚间的距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到了环形。
生2:在硬纸板上,我先用圆规画了一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉也得到了环形。
师:前两位同学都说到了哪几点?
生:都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里剪去小圆,就得到环形。
师:说说日常生活中有哪些物体的表面是环形的?
生:光盘、环形垫片等。
在数学教学中,应坚持以学生为主,把学习的主动权还给学生,让学生自主地进行尝试、操作、观察、想象、讨论、质疑等探究活动,从而亲自发现数学问题潜在的神奇奥秘,领略数学美的真谛。让每一位学生动手进行操作——剪圆环,让学生在动手操作中观察、讨论、归纳、总结,学生在亲身经历的活动中轻而易举就明白了“从大圆里剪去小圆,就得到环形”的道道,从而更容易了解环形的本质特征。这样的教学,不但看到了知识的“静态”存在,更用“动态”的观点引导学生考察了知识,即知识不但是认识的“结果”,更包括认识的“过程”。学生不仅“知其然”,还能“知其所以然”。这样,学生不仅掌握了新知识,也掌握了探索研究问题的方法,同时也培养了探索和创新的精神。
三、在探究发现中,碰撞学生的智慧的火花
师:判别下列图形中,哪些是环形?
师:观察得真仔细!环形的宽度相等。
师:环形中的阴影部分的大小就是环形的面积。你能比较出这几个环形面积的大小吗?
(生纷纷作答)
师:环形的面积与什么有关?
生1:环形的面积与环形的宽度有关。
生2:环形的面积与外圆、内圆的面积有关。
生3:因为圆的面积和半径有关,所以环形的面积与外圆、内圆的半径有关。
(这位学生博得了全班学生热烈的掌声)
师:判断题中其余三个组合图形不是环形,你能求出它们的面积吗?
生1:这些阴影部分的面积都是用大圆面积剪去小圆面积。
生2:不管是不是环形,只要是从大圆里剪去小圆,要求剩下部分的面积,都是用大圆面积剪去小圆面积。
上面的教学中,探求新知,其实就是在圆的面积基础上求圆环的面积。对一些学生来讲,解决它不成问题,所以我采用让学生尝试计算、分析校对、归纳公式的方法,让学生学得积极主动,不断闪出智慧的火花。数学教学,如果找准了起点,注重了学生的发展,就能在整个教学过程中,使学生产生“一波未平,一波又起”之感,让学生始终主动地参与学习活动。这样既能培养学生的学习信心,激发学生学习的主动性,又能切实提高课堂教学的有效性
数学面积的教学设计5
教学内容:人教版六数上第66页、67页
教学目标:
1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。
3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.
2.会正确计算圆的面积。
教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆
教学过程:
(课前游戏)
猜谜:前面有一片草地(打一植物)
草地上来了一群羊(打一水果)
草地上有一群羊,突然来了一群狼(打一水果)
师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。
一、 导入:
师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)
二、 认识圆的面积:
1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?
生:一个圆面积大,一个圆面积小。
师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:
1.(出示正方形与圆的课件)
师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多
少呢?
生:大正方形的面积是4r,小正方形的面积是2r。
2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?
生:圆的面积比大正方形的面积小,比小正方形的面积大。
师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?
生:3r。
师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。
四、 小组合作、拼摆。
1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?
生:底*高。S=ah。
师:还记得平行四边形的面积计算公式是如何推导出来的吗?
是这样的吗?我们来看一看。(演示)我们把平行四边形的`左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。
师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222
2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?
生:三角形或者等腰三角形。
师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!
提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。
学生开始小组合作。
3. 汇报合作结果。
师:你们都拼成了什么样的图形?上台来展示一下吧。
生分组上台展示。
要求学生汇报自己是怎样拼的,拼成了一个什么图形。
师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?
生:分得越多,越接近长方形。
五、 面积计算公式推导:
1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!
2.师:找到答案了吗?
生:长是πr,宽是r。
师:长方形的面积呢?请同学们在练习本上写一写。
那圆的面积呢?也写一写,读一读吧。
学生汇报。师板书。
3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?
4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?
生:半径。
师:知道什么也可以求出圆的面积呢?
生:直径、周长。
师:下面我们就来试一试吧!
六、 巩固练习。
1. 平方的口算练习。
1 2 3 4 5 6 7 8 9 10 20 3022222222222 2
2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。
3.圆形花坛的直径是20米,求圆形花坛的占地面积。
学生先汇报思路,再在练习本上完成。
4. 树干的周长是125.6米,求树干的横截面积是多少?
学生先汇报思路,再在练习本上完成。
七、 总结:
师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?
数学面积的教学设计6
【教学内容】
北师大版数学三年级下册第49页教学内容
【教学目标】
1.结合生活素材,通过找面、摸面、说面、比面等实践活动,认识面积含义。
2.经历比较图形大小的过程,探索比较图形大小的方法,积累比较图形面积的直接经验。
3.在多样化的数学活动中,培养学生勤于动手,勇于探索,乐于合作的学习习惯。
【教学重点】
认识面积的含义。
【教学难点】
用不同的方法比较面积的大小。
【教学准备】
课件、各种实物、学具袋(剪刀、方格纸、小方块)
【教学流程】
一、充分感知,揭示概念(认识面积)
1.复习旧知,直观感知
(1)复习旧知。
师:说一说,哪只铅笔长?哪只短?要知道哪只长,需要请出什么工具?(尺子)
师:这是数学书的封面和新华字典的封面,我们能不能描一描它们的边线?请你伸出手来跟着描。边线一周的长度叫做周长。我们把边线拉直,发现了什么?(数学书封面的周长长)
师:周长有长有短,还有什么不一样呢?(数学书比较大,字典比较小。)
评价:你观察得真仔细。
(2)摸数学书的封面,说说面在哪里。
师:请你拿出数学书,摸摸数学书的封面,像老师这样,把每个角落都要摸到。边摸边说这就是数学书的封面。
(3)引导学生通过“找——摸——说”感知比数学书封面大(或小)的物体的面。
师:有比数学书封面大点的面吗?(2个)
师:那能不能找到比数学书封面小点的面?
(4)举例说明生活中物体的表面,进而揭示物体表面面积的含义。
小结:看来面有可能是凹凸不平的。我们刚才找了那么多物体的面,这些都是物体的表面。物体的表面(有大有小)我们说物体表面的大小就是它们的面积。
【设计意图:创设学生熟悉的、感兴趣的问题情境,引导学生在观察、实践、探索、思考与交流中逐步建立面积概念。并借助丰富的感性材料,引导学生在找面——摸面——说面的系列活动中理解“物体表面的大小就是它们的面积”这一抽象的数学概念。通过盒子有6个面、苹果、球类表面是曲面的.认识拓宽物体表面的概念内涵,使知识的积累更全面。】
2.追根溯源,深化概念
(1)从立体图形中请出面,感知面在体上。
师:这是一个正方体,它有几个面?(6个)嗯,每个面都是正方形,我们把其中的一个面请出来,接着从长方体中请出长方形,圆柱中请出圆形。(课件演示)
(2)观察平面图形,区分封闭图形与不封闭图形,进一步完善面积的含义。
师:我们把这几个图形的边线描出来。像这样首尾来接的图形叫做封闭图形。正方形的面在哪里?(学生指)想象我们的手掌是把有颜色的刷子,“唰”,要把每个角落都刷到。刷长方形、圆形的面。封闭图形也有大有小,我们把封闭图形的大小叫做它们的面积。
师:判断一下,这几个图形能确定它的面积吗?(能的就刷出它的面)引发讨论:第6个图形能确定他的面积吗?
生1:行。
师:请你上来摸一摸。(学生可能摸到边线或者摸一部分)
生2:不行。
师:为什么呢?
生:首尾不想连。没有连起来。
师:像这样首尾不相连的图形我们把它叫做不封闭图形。我们能把它每个角落都刷到吗?(师用手示范,可以刷一点点,也可以刷很大。如果一直延伸下去,这个面有多大,能确定吗?(没办法)
小结:所以不封闭图形没办法确定它的面积。封闭图形能确定它的面积。这就是我们今天要学习的内容:什么是面积(板书)现在你能说说什么是面积吗?
【设计意图:现代化教学手段的辅助,从动感的演示中,使学生更直观地感知面,从实物抽象出面,直观感知面在体上,在点动成面的演绎过程中,拓宽知识内部体系,使学生对面的形成过程有更深入地认识。】
二、动手操作,积累经验(比较面积)
1.通过直接观察,比较出情景图中哪个图形的面积最小?利用重叠法比较哪个圆形的面积大?
师:现在对面积是不是有点感觉了?现在你能判断出哪个图形的面积最小吗?(三角形)
师:你是怎么一下子判断出来的呢?
生:看出来的。
师:也就是直接观察就能比较出来了是吧?我们把它叫做观察法。(板书)
师:接着能判断哪个圆形的面积大吗?
(学生可能有不同想法)
①师:(如果说不出重叠法)现在没办法观察比较出来,其实老师有个好办法,把这两个圆形重叠起来,瞧,它们的面积是?(一样的)
②师:(如果说出将它们重叠在一起)你的想法真独到。也就是说将这两个图形重叠在一起来比一比,是这样的吗?
师:我们可以把这样的方法称为(重叠法)(板书)
2.通过合作学习,在操作中探索比较面积相近的两个图形大小的方法。
师:猜一猜长方形与正方形哪个面积比较大呢?(有意在图中标出它们的长、宽、边长)
生1:长方形面积比较大。
生2:正方形面积比较大。
生3:一样大。(可能有学生觉得周长相等,面积就相等)
师:数学不能只停留在猜想上,需要进行科学的验证。出示活动要求:议一议:怎么比较?用哪些工具?做一做:选择工具和比较的方法,比一比。说一说:你的比较方法。可以选择的工具有剪刀、方格纸、和小方块。请拿出信封中的长方形和正方形,小组四人动手操作。
学生动手操作,教师巡视指导,将学生代表请到讲台上。
3.各小组代表分享比较方法,在交流中感受比较方法的多样性。
师:(整理课堂)亮闪闪的眼睛看过来,分享是件快乐的事。我们来认真听听这几组同学的想法。在听的过程中,如果你有什么想法或疑问可以举手提问。
生1:将长方形和正方形放在一起,多的部分剪下来,再比一比。得出正方形的面积比较大。
师:这组同学用到的工具是?(剪刀)这两个图形的形状变了吗?他是将两个图形重叠起来将多余的部分剪下来进行比较。我们把这样的方法叫做剪拼法。我们通过剪、拼改变图形的形状,这是种好办法,在以后的数学学习中还会经常用到。掌声送给这组同学。
(有的学生可能剪完后再摆方块)
生2:我们是在长方形上摆方块,然后数一数有15个方格,同样地,正方形有16个方格。
师:我们也把掌声送给这一组,他们也提供了一种好办法,我们可以把它叫做摆方块。(板书)通过摆方块我们知道长方形有几个小方块大呢?(15个)正方形呢?(16个)
师:原来面积还可以度量出来啊!
(可能有学生只摆一行有几个,有几行,再用计算的方法)
生3:我们直接在方格纸上数一数。……
师:掌声也送给这一组。这种方法也很巧妙,我们把它叫做数方格。
三、体会周长相等,面积可能不同;面积相同,形状可能不同。(深化理解)
1.师:同学们方法真是多种多样!可是笑笑和淘气是这样做的:
笑笑的做法:正方形有4个方格,长方形有15个方格。
师:所以长方形面积比较大,你同意吗?
生:我不同意。它们用的方格不一样大。
师:也就是说用方格比较大小时,单位要统一啊!
淘气的做法:量出每条边的长度,再加起来就能比较了。
长方形:(6+10)×2=32cm正方形:8×4=32cm它们的面积一样大。
师:怎么淘气和我们得出的结论不一样呢?
生:他比的是周长,不是面积。
师:是啊,周长是边线一周的长度,而面积是面的大小,周长相等,不一定面积一样呢!
演示用一条同样长的绳子,围成大小不一样的图形,让学生直观感受,周长相等,面积不一定相等。
2.体会面积相同,形状可能不同。
师:这节课老师发现同学们学得很认真。你们玩过这个游戏吗?(俄罗斯方块)这里面也藏着数学知识呢,请你认真观察这些落下来的方块。
师:比一比,谁的面积大?
生:一样大。
师:都有几个方格的面积呢?
生:4个。
师:对此你有什么发现吗?
生:面积都一样。
生:形状不一样。
师:是的,我们又发现了一个重要的秘密:面积相等,形状可能不同。
3.完成书本49页画面积为7个方格的图形。
师:翻开书本49页,请在方格纸上画出3个不同的图形,使它们的面积都等于7个方格的面积。
学生独立完成,汇报交流。
【设计意图:创设富有挑战性的问题情境,鼓励学生通过积极地合作、大胆地思考积累比较图形面积的直接经验,探索解决问题策略的多样化。在比较的过程中,有意设计错例,引导学生体会用方格比较图形大小时要用统一的度量单位,为后续知识的学习埋下伏笔。】
四、课堂总结
师:这节课,我们学习了什么?
是的,这节课,我们学习了什么是面积,比如数学书封面的大小就是它的面积,你能不能也像这样说一说,什么面的大小就是它的大小?
最后请同学们思考一下:点到线,研究的是长度;线到面,研究的是面积;那么面到体,会研究什么呢?
数学面积的教学设计7
教学目标:
1、使学生经历“猜想、验证、发现”的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。
2、培养学生观察、推理、归纳能力,体会转化思想的价值。
3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。
教学重点、难点:探索并掌握梯形的面积计算方法。
教学准备:教师准备多媒体课件一套,学生剪下6个梯形。
教学过程:
一、认知准备:知识、策略,双管齐下
谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是……(转化)
出示梯形图,提问:这是什么图形?
关于梯形,你已经知道了些什么?
那么,关于梯形,你还想知道些什么?
提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)
组织班内交流,根据学生回答相机板书。(板书:梯形转化成旧图形?)
[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,“迁移”是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼“转化”思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]
二、探索公式:猜想、验证、发现
1、动手操作,尝试转化
提问:你们是怎么想到用“转化”的方法来寻找梯形的.面积呢?
师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)
小组活动:挑选梯形尝试转化。
交流,演示,多媒体出示拼成的三种情况。
明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。
2、讨论关系
师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?
出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。
[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对“转化”思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(“剪移拼”和“转移拼”)和观察的经验(从底、高、面积三方面找关系)。因此,今天的“转化梯形”和“寻找关系”早已成了学生“跳一跳可以摘到的果子”!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]
3、应用关系,体验方法
在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。
师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?
学生任选一个梯形独立求出它的面积。
交流汇报:
(6+10)×4÷2
(3+7)×3÷2
(3+6)×6÷2
谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10))再乘上4呢?
提问:我明白了,这里算的是拼成平行四边形的面积(板书)
那为什么还要除以2呀?
4、想象延伸,发现方法
出示独立的梯形(标有数据)
提问:你能求出这个梯形的面积吗?
学生在草稿本上写下算式。
提问:(3+5)×4算的是什么?
你能想象出拼成的平行四边形的样子吗?用手书空画一画。
为什么要除以2?
归纳:现在你知道该怎样计算梯形的面积了吗?
根据学生回答板书:发现(上底+下底)×高÷2
[设计意图:一般的教学,在找出“拼成平行四边形和梯形的关系”后,就利用这3条关系通过适当的板书“顺理成章”地推导梯形的面积公式了。但事实是,这看似“顺理成章”的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了“等量代换”的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉“晕晕乎乎”就得出了公式,对推理的过程仅停留在几句“顺口溜”的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了“计算”一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就“瓜熟蒂落”了。]
5、回顾过程,感受策略
师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:……
三、应用公式:紧扣主线,不拘一格,技能与发散并重
1、直接应用,熟练公式
学生独立完成“练一练”第2题。
2、活用公式,体会梯形公式的实质
(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。
(2)“练一练”第1题
3、应用公式解决生活中的实际问题
完成“试一试”。
四、全课总结
师:今天你有什么收获?
数学面积的教学设计8
教学目标:
1.知识目标:经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2.能力目标:能正确运用圆的面积计算公式计算圆的面积
3. 情感目标:体会转化的数学思想方法,初步感受极限的思想。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、复习导入
1.提问:长方形的面积是什么?圆的面积是什么?
复习学过的图形面积公式,圆的面积该怎样计算?
3.引入:今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
二、探究新知
1.教学例7。
(1)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?
(3)实验验证:
出示例7第一幅图。思考:
①你准备怎样数?与同学交流。
②图中正方形的面积和圆的半径有什么关系?
估计一下圆的面积大约是正方形面积的几倍。
(4)指导完成第一幅图的计算和填空。
同桌合作,按照同样的方法进行计算并填表
2.交流归纳:观察上面的`表格,你有什么发现?
小结:圆的面积是半径平方的3倍多一些。
3.教学例8。
(1)谈话:以前我们是怎样推导出平行四边形的面积呢?那么圆能不能转化成学过的图形?
(2)操作体验:把117页上半部分剪下来,按16等份剪开,再拼一拼,看看能什么图形。
(3)提问:拼成的图形像什么图形?(拼成了一个近似的平行四边形。)
(4)初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
教师演示后进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什图形?(长方形)
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽
是圆的半径:长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,得出圆的面积公式。(教师板书)
(9)追问:知道圆的什么条件,就可以根据圆的面积公式计算圆的面积了?
(10)完成练一练。
4.教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转喷水器?
(2)想象一下自动喷水器旋转一周后喷灌的地方是什么图形,喷水的最远的距离是什么意思。
(3)学生独立完成计算。
(4)指导算术方法和代入法两种方法的注意事项。
三、课堂小结
通过今天的学习,你有什么收获?
四、布置作业
完成练习十五第1、3、4题。
数学面积的教学设计9
【教学内容】
北师大版五年级上册数学教科书第75页。
【设计理念】
主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。
【教材分析】
学生在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。在此基础上学习组合图形,学习此部分知识,一方面可以巩固已学的基本图形,另一方面将所学的知识进行综合运用,提高学生综合解决问题的能力。在学生探索问题,解决问题的过程中渗透数学转化的思想,在学生灵活运用多种方法解决问题的过程中培养学生优化的意识,从而培养学生思维的灵活性。
【学情分析】
五年级的学生正在经历自主高效的实验,学生无论从自学能力,还是课堂的积极探索都有了喜人的变化,学生学习方式的变化更加促使老师要以学定教,学生在学习的过程中可能会有这样或那样的问题,特别是本节课要探究多种方法解决问题,虽然学生已经在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。但对于组合图形面积的计算学生可能在解决此问题的策略——即数学的转化的思想上没有充分地认识,另外学生在理解用多种方法解决问题时没有优化方法的意识,需要教师的引导与点拨,但我相信学生在老师的引导下会完成本节课的任务。
【学习目标】
1.在自主探索的活动中,理解计算组合图形面积的多种方法。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确地解答。
3.能运用所学的.知识,解决生活中组合图形的实际问题。
【教学重点】掌握求组合图形的面积的几种方法。
【教学难点】选择有效的方法解决实际问题。
【教学准备】多媒体课件
【教学过程】
课前谈话:
老师很高兴能和大家一起来上这节课。我相信:我们五x班全班同学都能把最精彩的一面展示出来。你们喜欢数学吗?想不想把数学学得verygood非常棒!老师告诉你学好数学的小诀窍:认真听,用心想,积极说。能不能做到这三点?让我们带着自信走进课堂!
【设计意图】简单的几句话,拉近了学生与老师的距离,关注学生的情感体验,同时渗透良好的学习习惯的培养。九个字书写在黑板上以提示学生。
一、课题导入。
1.老师今天给大家带来了一些漂亮的图片,来欣赏一下。
(多媒体出示小鱼图、火箭、房屋平面设计图、中队队旗等生活中的组合图形。)
一起说说你看到了什么?小鱼图是由两个三角形组成的……引导学生说出每幅图是怎样组成的。你们还记得它们的面积公式吗?
2.教师小结:上面的每个图形都是由我们学过的图形组成的,像这样由几个简单的图形组成的图形叫组合图形。这节课,我们就来研究组合图形的面积。(板书课题)
【设计意图】:课开始,充分发挥多媒体的优势,呈现学生熟悉的、生活中的组合图形,给学生视觉上的刺激。唤醒学生的已有认知,激发学生的求知欲。
二、展示目标,师生共同解读目标。(关键词:理解方法,解决问题)板书关键词。
【设计意图】:使学生明确本节课所学内容,确立所要达成的目标。
三、自主探究,获取新知
1.联系生活,提出问题。
(1)小华家新买了住房,计划在客厅铺地板。请你估计他家至少买多少平方米地板,再实际算一算。(出示课件)客厅平面图。
【设计意图】:在实际问题情境中激发学生探索问题的兴趣,从而产生自主学习的动机。
2.自主探究,解决问题。
教师课件出示导学提纲:阅读教材第75页,思考下列问题。
(1)我们已经学过哪些图形的面积?怎样求它们的面积?
(2)请你估一估小华家至少买多少平米的地板?试说出你的理由?
(3)计算地板面积,你还有哪些办法?尝试用画图的方法说明~
(4)你能举例说一说计算组合图形面积的方法吗?
3.学生先自学然后组内交流。
(教师预设):
A.学生可能转化的图形有:
B.学生可能会运用多种方法求出客厅的面积,但是不清楚解决此问题的策略——即转化的数学思想。
4.教师深入到小组与学生共同研究问题,了解学生的自学情况。
5.学生在学习单的正面尝试解答,老师巡视,让学生把不同的转化方法展示到黑板上。
四、展示汇报:
1.各组按展示到黑板上的转化方法做汇报,学生讲解自己的思路。
【设计意图】计算组合图形的面积最重要的一步是运用转化思想把图形分割或添补成几个基本图形。把转化的过程和计算的过程分解开来进行,有效地突破了难点,在学生在转化的过程中思维真正的动起来。上黑板贴出学生的探究结果,让学生讲解自己的思考过程,也许学生表达的不完整,但毕竟是学生自己思考的结果,所以应该给予肯定,以激发学生的学习积极性,渗透一题多解的方法,培养学生思维的灵活性。
2.计算面积。
学生分组用一种方法计算图形的面积,最后全班订正。(在学习单背面完成)
教师预设点拨:观察上面的几种方法,你认为哪些方法更简单一些?你是怎样想的?
教师预设点拨:
推导平行四边形和三角形的面积公式,计算异分母分数相加减时我们都用到转化思想。今天我们学习组合图形的面积时又运用了转化的策略,看来数学的转化的思想很重要。
【设计意图】在经历了分割图形或添补图形的思考过程,并对几种方法进行比较优化以后,再动手计算,给学生提供了再一次选择解决方法的机会,比较出几种方法的特点,培养学生的质疑能力,提高学生的思维灵活性。
五、达标检测:
1.(基本题)下面的各个图形可以转化成哪些已学过的图形?(教材76页练一练第一题)
学生自己先思考如何把这个图片转化成已经学过的图形,是分还是补?分怎么分?补如何补?
2.(必做题)试试:你知道这个图形的面积吗?
(每小格长度是1厘米)
【设计意图】让学生在认真观察的基础上,用割补的方法把图形转化成一个长方形,对转化的思想有更深刻的认识。
3.如图,一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?
4.(必做题)如图,有一面墙,粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?(教材76页练一练第二题)
六、拓展延伸
1.下图是由两个正方形组成,求阴影部分的面积。(单位:米)
2.用组合图形面积的计算方法,可以解决生活中的很多问题……如中队队旗,有兴趣的同学课下可以量一量、算一算中队队旗的面积。
七、学教反思
1.学习本课你有哪些收获?
2.你觉得这节课你表现怎么样?给自己评价一下!
数学面积的教学设计10
教学目标
1、使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法、
2、培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念、
教学重点
表面积的意义、
教学难点
长方体表面积的计算方法、
教学过程
一、复习准备、
1、说出长方形面积的计算公式、
2、看图回答、
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空、
这个长方体上、下两个面的长是( )宽是( )、
左、右两个面的长是( )宽是( )、
前、后两个面的长是( )宽是( )、
3、想一想、
长方体和正方体都有几个面?(6个面)
二、揭示课题、
今天这节课我们就来学习和研究有关这6个面的一些知识、
三、教学新课、
(一)长、正方体表面积的意义、
1、老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、
“左”、“右”、“前”、“后”标在6个面上、
2、沿着长方体和正方体的棱剪开并展平、(老师先示范,学生再做)
3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?
教师明确:长方体或者正方体6个面的总面积,叫做它的表面积、
(板书:长方体和正方体的表面积、)
(二)长方体表面积的计算方法、
例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?
1、这题的问题,实际上就是要我们求什么?
2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?
3、学生分组讨论、
解法(一)
6×5×2+6×4×2+5×4×2
= 60+48+40
= 148(平方厘米)
解法(二)
(6×5+6×4+5×4)×2
=(30+24+20)×2
= 74×2
= 148(平方厘米)
4、比较上面两种解答方法有什么不同?它们之间有什么联系?
解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和、解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的.分配律可将解法(一)改变成解法(二)、
四、巩固练习、
1、一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?(用两种方法计算)
2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米、做这个铁盒至少要用多少平方厘米的铁皮?
五、课堂小结、
通过解答例1和做一做,你发现长方体表面积的计算方法吗?
结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2
=(长×宽+长×高+宽×高)×2
六、课后作业、
1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?
2、一个长方体的形状大小如下图、
(1)它上、下两个面的面积分别是多少平方分米?
(2)它前、后两个面的面积分别是多少平方分米?
(3)它左、右两个面的面积分别是多少平方分米?
数学面积的教学设计11
教学内容:
青岛版《义务教育教科书五四学制》三年级上册第100-101页,信息窗二第一课时。
教学目标:
1、使学生理解掌握长方形面积计算公式,并且会运用公式进行计算。让学生通过实践操作、观察、推理等活动,发现长方形的长、宽与面积之间的关系。
2、在学习过程中让学生充分感受到数学与生活的联系,在教与学的活动中,让学生体验实践探索、观察发现、拓展应用的学习过程,掌握探讨知识的一般方法。初步培养学生的观察、操作及归纳推理能力。
3、通过数学活动培养学生对数学的情感,感受家的温馨。
教学过程:
一、创设情境 引入新课
师:老师给同学们带来一首好听的.歌曲《吉祥三宝》(点击播放)。
师:喜欢听这首歌吗?就像歌里唱到的,爸爸、妈妈和我们就是吉祥如意的一家!老师也有一个幸福的家,这是老师住的楼房,一起看看吧!(放课件:小区楼房)这是我们家的客厅、厨房、餐厅、卧室(出示情境图)
师:从图中你知道了哪些数学信息?给居者新信息你能提出什么问题?
生1:小卧室的面积是多少?
生2:餐厅的面积是多少?
(出示房间图)
师:怎样求小卧室的面积?
生1:小卧室地面的形状是长方形。
生2:我们借助学具来研究。
二、合作实践 探究新知
问题一:怎样求长方形的面积呢?小组合作交流完成学案。
学生展示
生1铺一铺:我用1平方厘米的正方形把长方形纸片全部铺满,共用了20个。它的面积是20平方厘米。
生2摆一摆:我沿长摆了5个,沿宽摆了4个,就说明可一摆四行,共用了54=20个正方形,知道它的面积是20平方厘米。
生3量一量:我量出长是5厘米,宽是4厘米,就能想出沿长能摆5个,沿宽能摆4个,共用了54=20个正方形,知道它的面积是20平方厘米。
问题二:你会求下面长方形的面吗?
生:先测出长和宽,再想一想沿长和宽各能摆几个面积单位。沿长可以摆5个面积单位,沿宽可以摆3个面积单位。53=15(平方厘米)21cnjycom
师:回顾刚才的探索过程,你有什么发现?
生1:我发现长方形的面积与它的长和宽有关。
生2:我发现长方形的面积等于长乘宽。
总结:长方形的面积=长宽
小卧室的面积:54=20(平方米)
答:小卧室的面积是20平方米。
问题三:餐厅的面积是多少?小组合作,展示交流。
生1:餐厅地面的形状是正方形的。
生2:长方型的的长和宽相等时,就是正方形了。
生3:长方形的面积等于长乘宽,正方形的面积等于边长乘边长。
总结:正方形的面积=边长边长。
餐厅面积:44=16(平方米)
答:餐厅的面积是16平方米。
三、自主练习
师:有了这个计算方法,我们就可以解决生活中、家庭中的许多问题。(出示题目)
孝心贺卡师:同学们,我们都有一个温暖的家,爸爸、妈妈为了我们的家付出了很多,大家想不想为他们做点什么?老师提议,咱们做一张孝心贺卡送给爸爸、妈妈,好吗?(出示要求,师读题,生独立制作)汇报展示
师:爸爸、妈妈看到这张充满祝福、充满收获的贺卡,一定会很高兴的!在这里,老师也祝同学们学习进步!(放歌曲《吉祥三宝》)这节课就上到这儿,下课。
数学面积的教学设计12
教学目标
1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。
3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。
教学重点
掌握并会用公式计算平形四边形的面积。
教学难点
利用转化的数学思想和方法来探索平形四边形面积公式
教学教程:
一、创设情境,引出问题
同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)
那长方形和正方形的面积与什么有关,怎么计算呢?(学生回答)
平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)
今天我们就来研究平行四边形的面积公式
二、自主探究,动手操作
1、出示要求
把平行四边形的纸片剪一刀,然后拼成一个长方形。
2、学生动手操作,教师深入学生当中观察指导
3、汇报会交流。
生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。
生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。
师:要拼成一个长方形要怎么做才能办到呢?
生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。
师:对,只要沿着平行四边形的一条高剪开,再平移就可以拼成一个长方形。
4、议一议:平行四边形和拼出的长方形有什么关系呢?
生1:拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。
生2:拼成的平行四边形的面积和长方形的面积想等。
师:那谁来总结一下平行四边形的面积公式。
生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)
5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。
生:S=a×h
过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。
三、巩固训练,拓展延伸
1、试一试,计算平行四边形的面积。让学生先说一说图上的.数据都表示什么,再试着计算。
2、练一练第1题。指名读题,独立完成。
3、问题讨论。提出问题:下图中的两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。
生:两个图形的面积相等,因为它们的底一样,高也相等。
生:平行四边形的面积等于底乘高,它们的底都是2、6,高都是1、8,所以面积相等。
师:也就是说,等底等高的平行四边形的面积想等。
四、课堂小结
通过本节课的学习,你有哪些收获?
五、布置作业
1、完成57页第2、3题
2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。
数学面积的教学设计13
一、教案背景
“圆柱的表面积”是北师大版小学数学教材第十二册的内容,是在学生已有初步的几何概念,空间想象力的基础上进行教学的。教学目的在于通过教学活动,培养学生观察能力,勤于动脑,善于思考,培养以创新的思维解决开放性的问题,及合作学习的能力和对数学的学习兴趣。
学生课前准备:
(1)准备矿泉水瓶等一些圆柱形物品。
(2)自带小剪刀和图画纸。
二、教学课题
圆柱体表面积的教学是本单元的第二个主题活动,其前知识基础应该是圆柱体的认识和长方体、正方体表面积的认识和计算。
1、使学生理解圆柱体侧面积和表面积的含义。
2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
3、体验成功与失败的收获,体会合作的愉悦。
三、教材分析
《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元学习的内容主要有:圆柱和圆锥的认识、圆柱的表面积、圆柱和圆锥的体积等。根据教材的编写意图,圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。本课是学生已经认识了圆柱体的特点以后进行的内容。
四、教学重点
通过学生操作演示,推导出圆柱侧面积、表面积的计算公式
五、教学难点
使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系。教学之前用百度在网上搜索《圆柱的表面积》的相关教学材料,找了很多教案和材料作参考,了解到教学的重点和难点,确定课堂教学形式和方法。然后根据课堂教学需要,利用百度搜索关于圆柱的视频,课堂放给学生观看,加深印象。用百度图片网上搜索下载一些圆柱的图片,培养学生读图识别能力。通过百度在网上搜索一些关于圆柱的文字资料和图片资料,做成PPT课堂给同学们演示,生动直观、活泼有趣地学习本课。
六、教学方法
情境教学法、实践操作法、迁移类推法
1、生用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?
2、能用已有的知识计算它的面积吗?
七、教学过程
(一)创设情境,激趣导入
【设计意图:本环节通过出示生活中一些圆柱体图片,创设情境,并通过师生对话交流,
激起学生求知欲,让学生饶有兴趣的步入本节课的殿堂。】
教师提问:认识这些物体吗?
学生回答:圆柱体
教师谈话:那我们本节课就再次走入圆柱的世界,去探索它的表面积。(板书课题)
(二)自主探索,发现问题
【设计意图:本环节将数学与实际生活密切联系在一起,利用百度视频—圆瓶贴标机,让学生感受到圆柱的侧面是哪一部分,并通过学生动手操作,从而让学生清楚的知道了圆柱侧面展开得到的图形,从而顺利的解决了重难点】
圆柱的侧面积
学生回答:(给圆柱形瓶子贴标签)
教师提问:标签的面积应该是圆柱的什么面积呢?
学生回答:侧面积
教师谈话:那我们就一起用手中的实物瓶子来一起操作吧。
1、用喜欢的方式,将个人的瓶子的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)
(展开的形状可能是长方形、平行四边形、正方形等)
独立操作后,与小组里的同学交流。
2、能用已有的知识计算它的面积吗?
先计算一个瓶子需要的包装纸,自己操作测量,进行动手学习活动,教师进行巡视指导。
3、小组汇报。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。
教师提问:这个长方形与圆柱体有什么关系?学生回答:长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。
(课件展示)
长方形的面积=圆柱的侧面积
即长×宽=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
教师提问:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
4、解决问题:
10000瓶矿泉水,需要用多少平方米的包装纸呢?
小组交流:只解决1个瓶子的包装纸的面积即可
圆柱表面积
1、教师提问:出示主题图:做一个圆柱形纸盒,需要多大面积的纸板?
这一事件从数学角度看,是个怎样数学问题?
学生回答:求圆柱表面积
教师引导学生说一说圆柱体表面展开图是什么样的,教师再出示圆柱体展开图
2、教师提问:圆柱体的表面积怎样求呢?
学生得出结论:圆柱的表面积=圆柱的.侧面积+底面积×2
3、学生独立解答,汇报想法。
(三)巩固练习,实际应用
【设计意图:本环节则是让学生将新学到的知识与实际相结合,充分体现了“数学来源于生活,服务于生活”的思想,进而巩固新知。】
一根圆柱底面直径是2米,高3米,表面积是多少?
(四)回顾全课,加深印象
【设计意图:本环节的设计是让学生通过自己谈收获,从而抓住本节课的学习重点,也梳理了知识的头绪。】
(1)圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
(2)要求一个圆柱的表面积,一般需要知道哪些条件()
(五)开阔视野,课外延伸
【设计意图:本环节我则利用了百度搜索的强大功能,寻找到所需要的习题,让学生走出书本的束缚,开阔了知识面,从而达到举一反三的目的。】
出示课外习题
板书设计:
圆柱体的表面积
圆柱的侧面积=底面周长×高→S侧=ch
↓↑↑
长方形面积=长×宽
圆柱的表面积=圆柱的侧面积+底面积×2
八、教学反思
本节课充分利用了百度搜索功能,并与教材有机的结合,突出了重点,解决了难点。教学中采用操作和演示、讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练相结合。
1、把握重点,突破难点,合理利用教材
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。
3、讲解与练习相结合
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
数学面积的教学设计14
教学目标:
1、在自主探索活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
教学重点:能正确计算组合图形的面积。
教学难点:能根据各种组合图形的条件,正确选择计算方法并解答。
教学准备: A4纸 基本图形 作业练习
教学过程:
一、 谈话激趣,揭示课题
师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:
1、 给学生发礼物
2、 复习各个平面图形的面积公式
(这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)
3、 拼成自已喜欢的组合图形
请选择两个或两个以上的图形拼成你喜欢的图形。
4、 学生展示并说一说由哪些基本图形组成的。
(师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)
5、 教师总结:像这样由我们学过的一些基本图形组合而成的图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。
二、 探索交流,解决问题
1、 出示教材第88页的情境图
师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。
2、 想一想,估一估
先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)
(若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。
师:刚才我们在估算客厅面积时是把它看成我们学过的长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?
3、 自主探索,计算面积
师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。
(师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的`图形的面积的计算。
(1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)
4、展示学生的作品,并由学生说说理由。(怎样计算的?)
5、(展示四种已计算的分法)再对前四种进行分类
(师:
分割法:
添补法:
割补法:
(师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)
板书:
1、先转化成已学过的基本图形。
2、分割后的图形是否可以计算。
3、分割后的图形是否比较简单易算。
师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。
三、 理解运用,巩固练习
师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。
老师出两题考考大家,敢接受挑战吗?
1、 出示练习,学生做在练习纸上。
2、 讲评完第一题后,操作第二题。
四、 学生畅谈收获
通过这节课的学习,你在什么收获?
数学面积的教学设计15
教学内容:
圆环的面积计算。第68页例2。
教学目标:
1.使学生认识圆环,掌握圆环的特征,掌握计算圆环的面积方法。
2.培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。
3.激发学生学习的兴趣。
教学重点:
掌握圆环面积的计算方法。
教学难点:
理解环形的形成过程,形成圆环的空间观念。
教学准备:
多媒体课件,剪刀,有关环形制品。
教学过程:
一、情境导入
1、用课件出示几个生活中的圆环。
2、请学生列举生活中的圆环。
师:在生活中圆环很多,这节课我们就来研究有关圆环的知识。
板书课题:圆环的面积
二、课前检测
1、出示检测题,学生独立完成,教师巡视了解学生情况。
2.学生汇报。
3、师在屏幕上演示,加深圆环的空间观念。
在大圆里画一个同心的小圆,用剪刀沿着小圆的周长把小圆剪掉,剩下的图形就是一个圆环。
3、圆环各部分的名称。课件出示。
二:探究新知
1、出示例2
2、小组探究圆环面积的计算方法。
学习要求:
(1)讨论如何计算圆环的面积:
圆环的面积=()-()
(2)列式计算。
(3)探究圆环面积的`字母公式。
S圆环=()-()
3、学生小组合作探究,师巡视,个别指导。
4、学生汇报结果,师公布正确答案。
5、追问:还有没有其它的计算方法。
S圆环=∏(R2-r2)
三、分层练习
1、通过刚才的探究同学们想一想,要算圆环的面积必须要知道哪些条件?(大小圆的半径)
2、学生齐读:S=∏R2-∏r2或S=∏(R2-r2)
3、同学们掌握圆环面积的计算方法了吗?现在我要检验大家是不是真的掌握了,基础训练题。(课件出示练习题)
(1)生看题独立解决,师巡视辅导。
(2)生汇报。
4、变式训练1(课件出示练习题)
(1)先让学生思考:半圆环面积和圆环面积有什么关系?(是圆环面积的一半)所以只要先把什么面积求出来?在怎样就可以求出半圆环面积?
(2)生独立解答,师个别指导。
(3)生汇报交流。
5、变式训练2
(1)出示练习题。
(2)生独立解答,师个别指导。
(3)生汇报交流。
师追问:如果不知道大园、小圆的半径怎么求圆环的面积?(先求出大圆、小圆的半径再用公式。)
三、总结:通过本节课的学习,你有什么收获?
四、作业:练习十五第5----7题。
【数学面积的教学设计】相关文章:
《圆的面积》教学设计03-06
圆的面积教学设计02-29
《认识面积》教学设计08-17
《圆环的面积》教学设计06-14
梯形的面积教学设计06-08
《圆的面积》的教学设计05-21
梯形的面积教学设计08-15
小学数学组合图形的面积教学设计与反思06-28
组合图形面积的教学设计08-29