《圆的面积》的教学设计

时间:2024-05-21 11:54:06 教学设计 我要投稿

《圆的面积》的教学设计

  在教学工作者开展教学活动前,通常需要准备好一份教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么教学设计应该怎么写才合适呢?以下是小编为大家整理的《圆的面积》的教学设计,欢迎阅读,希望大家能够喜欢。

《圆的面积》的教学设计

《圆的面积》的教学设计1

  一、激趣导入

  1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

  2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积

  3、看到这个课题,你想知道些什么?

  学习目标:

  (1)了解什么是圆的面积;

  (2)了解与哪些因素有关;

  (3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。

  二、实践导学

  (一)认识圆的面积

  1、什么叫圆的面积。

  2、小组讨论

  3、圆的大小主要与哪些因素有关?

  (1)半径;

  (2)直径;

  (3)周长。

  (二)回忆平行四边形面积公式推导过程

  1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

  2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

  3、小组讨论

  (三)操作探究

  1、转化圆形推导公式

  (1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?

  (2)让学生拿出卡纸(2),观察卡纸(2)上的.圆被等分成多少分,圆又被转化成什么图形?

  (3)教师课件展示圆被平均分成16等份后转化的图形。

  (4)观察比较,你有什么发现?

  2、引导学生观察比较,推导圆面积计算公式。

  (1)将圆通过剪拼,可以转化成已经学过的什么图形?

  (2)新的图形与原来的圆有什么联系?

  (3)试推导圆的面积公式。(课件展示)

  长方形的面积=长×宽

  圆的面积=c÷2×r=2πr÷2×r=πr2

  s=πr2

  三、练习巩固

  1、运用公式学习例1、

  学生试做,说根据,总结强调。

  2、完成基本练习(做一做)

  四、拓展提高

  1、解决“小羊吃草”问题

《圆的面积》的教学设计2

  教学目标:

  1.知识目标:经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2.能力目标:能正确运用圆的面积计算公式计算圆的面积

  3. 情感目标:体会转化的数学思想方法,初步感受极限的思想。

  教学重点:

  探索并掌握圆的面积公式,能正确计算圆的面积。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆的面积公式的推导图。

一、复习导入

  1.提问:长方形的面积是什么?圆的面积是什么?

  复习学过的图形面积公式,圆的面积该怎样计算?

  3.引入:今天这节课我们来研究圆的面积是如何计算的。

  (板书:圆的面积)

  二、探究新知

  1.教学例7。

  (1)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

  (2)圆的面积和半径或直径究竟有着怎样的`关系呢?

  (3)实验验证:

  出示例7第一幅图。思考:

  ①你准备怎样数?与同学交流。

  ②图中正方形的面积和圆的半径有什么关系?

  估计一下圆的面积大约是正方形面积的几倍。

  (4)指导完成第一幅图的计算和填空。

  同桌合作,按照同样的方法进行计算并填表

  2.交流归纳:观察上面的表格,你有什么发现?

  小结:圆的面积是半径平方的3倍多一些。

  3.教学例8。

  (1)谈话:以前我们是怎样推导出平行四边形的面积呢?那么圆能不能转化成学过的图形?

  (2)操作体验:把117页上半部分剪下来,按16等份剪开,再拼一拼,看看能什么图形。

  (3)提问:拼成的图形像什么图形?(拼成了一个近似的平行四边形。)

  (4)初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

  教师演示后进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什图形?(长方形)

  (5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

  (6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽

  是圆的半径:长方形的长是圆周长的一半。

  (7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

  (8)根据学生的回答,得出圆的面积公式。(教师板书)

  (9)追问:知道圆的什么条件,就可以根据圆的面积公式计算圆的面积了?

  (10)完成练一练。

  4.教学例9。

  (1)出示例9,提问:有没有在生活中见过自动旋转喷水器?

  (2)想象一下自动喷水器旋转一周后喷灌的地方是什么图形,喷水的最远的距离是什么意思。

  (3)学生独立完成计算。

  (4)指导算术方法和代入法两种方法的注意事项。

  三、课堂小结

  通过今天的学习,你有什么收获?

  四、布置作业

  完成练习十五第1、3、4题。

《圆的面积》的教学设计3

  “圆的面积”说课设计教学重难点及教法说明 说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。

  圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基础本节课的教学目的要求是:

  1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。

  2.通过教学培养学生初步的空间观念。

  3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。

  本节课分四个环节来设计教学。

  第一个环节:复习导入新课 为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。

  第二个环节:新授 教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。

  (一)公式的推导

  1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。

  2.推导圆面积公式

  第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?

  第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的'面积。

  第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

  3.小结

  让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。

  4.阶段性练习

  a.看标有半径的圆,求面积。

  b.已知半径求面积。(练习时交待运算顺序。)

  (二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。

  第三个环节:巩固练习 对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。

  第四个环节:布置作业。 (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

《圆的面积》的教学设计4

  教学理念:

  本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

  接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

  教学目标:

  1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

  2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

  3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

  4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

  教学重点:

  运用圆的面积计算公式解决实际问题。

  教学难点:

  理解把圆转化为长方形推导出计算公式的过程。

  教学准备:

  多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。

  教学过程:

  一、创设问题情境,激发学生学习兴趣 。

  1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

  2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的? (电脑课件演示)

  [设计意图:创设问题情境,启发学生回忆长方形、平行四边形、三角形和梯形周长和面积的概念。再利用电脑课件演示,让学生对已经学过的平面图形面积公式的推导有更清晰的认识,从而激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。]

  二、合作交流,探究新知。

  1、出示圆:

  (1)让学生说出圆周长的概念,并指出来。

  (2)想一想:圆的面积指什么?让学生动手摸一摸。

  (揭示:圆所占平面的大小叫做圆的面积。)

  (3)对比圆的周长和面积,让学生感受他们的区别。

  同时引出课题——圆的面积。

  [设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]

  2、推导圆面积的计算公式。

  (1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

  (2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

  [设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]

  (3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

  ①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

  ②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

  [设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]

  ③当圆转化成近似长方形时,你们发现它们之间有什么联系?

  课件演示:

  师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的'图。想象一下,如果平均分成64份、126份??又会是什么情形?

  ④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

  [设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]

  (4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

  ①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

  ②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

  ③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

  (5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

  (6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

  [设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]

  三、实践运用,巩固知识。

  1、已知圆的半径,求圆的面积。

  判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

  =3.14×5×2=31.4(米)

  (学生先独立思考,再汇报交流,共同修改。)

  强调:半径的平方是指两个半径相乘。

  2、已知圆的直径,求圆的面积。(教学例1)

  ①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

  ②学生汇报计算方法,要强调首先算什么?

  ③打开书本P68补充例1。

  3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)

  小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

  ①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

  ②根据圆的周长公式,师生间推导出求半径的计算方法。

  ③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

  4、一个圆形溜冰场,半径30米。

  (1)这个溜冰场的面积是多少平方米?

  (2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

  提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

  [设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]

  四、总结评价,拓展延伸。

  1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

  2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

《圆的面积》的教学设计5

  【教学内容

  义务教育课程标准实验教科书第十一册P69~71例1、例2。

  【教学目标

  1、认知目标

  使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

  2、过程与方法目标

  经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

  3、情感目标

  引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  【教学重点】:

  掌握圆的面积的计算公式,能够正确地计算圆的面积。

  【教学难点】:

  理解圆的面积计算公式的推导。

  【教学准备】:

  相应课件;圆的面积演示教具

  【教学过程

  一、情境导入

  出示场景——《马儿的困惑》

  师:同学们,你们知道马儿吃草的大小是一个什么图形呀?

  生:是一个圆形。

  师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?

  生:圆的面积。

  师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

  [设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

  二、探究合作,推导圆面积公式

  1、渗透“转化”的数学思想和方法。

  师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?

  我们先来回忆一下平行四边形的面积是怎样推导出来?

  生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

  生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

  生:这样就把一个不懂的问题转化成我们可以解决的问题。

  师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

  师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

  2、演示揭疑。

  师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

  师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

  师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的.图形就会越接近于什么图形?(长方形)

  [设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]

  3、学生合作探究,推导公式。

  (1)讨论探究,出示提示语。

  师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

  ①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

  ②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

  ③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

  师:你们明白要求了吗?(明白)好,开始吧。

  学生汇报结果,师随机板书。

  同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

  (2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

  (3)揭示字母公式。

  师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

  (4)齐读公式,强调r2=r×r(表示两个r相乘)。

  从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

  [设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

  三、运用公式,解决问题

  1.教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。

  预设:

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  3.求下面各圆的面积。

  [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

  3.教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

  教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

  [设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]

  四、课堂作业。

  1、教材P69页“做一做”第2小题。

  2、判断题

  让学生先判断,并讲一讲错误的原因。

  3、填空题

  复习圆的半径、直径、周长、面积之间的相互关系。

  4、教材P70页练习十六第2小题。

  5、完成课件练习(知道圆的周长求面积)

  老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。

  五、课堂总结

  师:同学们,通过这节课的学习,你有什么收获?

  六、布置作业

《圆的面积》的教学设计6

  教学目标:

  知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。

  教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  教学过程:

  一、创设情境,提出问题。

  1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  2. 这个圆形的面积指的是哪部分呢?

  3. 今天这节课我们就来学习圆的面积。(板书:圆的面积)

  二、探究思考,解决问题。

  1.请大家估计半径为5米的.圆面积大约是多大?

  2.用数方格的方法求圆面积大小

  ①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  3.在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1.大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?

  2.那么圆形的面积可由什么图形面积得来呢?

  3.拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?

  4.同学们操作,教师巡视.

  5..大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?

  6.你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。

  ①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

  ②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

  7用字母怎么表示圆面积公式呢?

  四、应用圆面积公式

  1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

  2.第18页第1题

  学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

  3. 第18页第2题

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。

  板书设计:

  圆的面积

  平行四边形面积=底×高,

  圆形面积公式=圆周长的1/2×半径

  圆形面积公式=圆周率圆×半径2

《圆的面积》的教学设计7

  目标预设:

  1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。

  教学过程:

  一、引导估计,初步感知。

  1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

  2、估计圆面积大小与半径的关系。

  师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

  二、动手操作,共同探索。

  1、引发转化,形成方案。

  (1)我们如何推导三角形,平行四边形,梯形的面积公式的?

  (2)准备如何去推导圆的面积?

  2、动手操作,共同探究

  (1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

  (2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

  (3)比较:与刚才老师拼成的图形有何不同?

  (4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

  如果一直这样分下去,拼成的图形会怎么样?

  3、引导比较,推导公式。

  圆与拼成的`长方形之间有何联系?

  引导学生从长方形的面积,长宽三个角度去思考。

  根据学生回答,相机板书。

  长方形的面积=长×宽

  ↓↓↓

  圆的面积=∏rr

  =∏r2

  追问:课始我们的估算正确吗?

  求圆的面积一般需要知道什么条件?

  三、应用公式,解决问题

  1、基本训练,练练应用公式,求圆的面积。

  2、解决问题

  (1)出示例9,引导学生理解题意。

  要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

  (2)学生计算

  (3)交流,突出5平方的计算

  四、巩固练习

  1、练习十九1求课始出示的光盘的面积

  2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?

  五、这节课你有什么收获?你认为重点的

  地方有哪些?

  引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

  六、课堂作业

  补充习题51页2、3、4题

  拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

  圆的面积是多少平方厘米?

  反思:

  1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

  2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

  3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

《圆的面积》的教学设计8

  一、教材分析

  本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习关于平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

  二、学情分析

  学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

  三、教学目标

  知识与技能:

  1.理解圆的面积的概念。

  2.理解圆的面积公式的推导过程,掌握圆的面积的'计算方法,能正确解决实际问题。

  四、过程与方法:

  经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

  五、情感态度价值观:

  感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  六、教学重点和难点

  教学重点:

  掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

  教学难点:

  理解圆的面积公式的推导过程。

  七、教学准备:

  圆片、课件。

《圆的面积》的教学设计9

  一、教学内容

  北京市义务教育课程改革实验数学教材第11册二、教学目标:

  1、知识与技能:

  使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。

  2、过程与方法:

  引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。

  3、情感态度价值观:

  培养学生认真观察、深入思考,积极合作的良好品质。

  三、教学重点:

  通过合作探究活动,推导出圆面积公式。

  四、教学难点:

  理解转化后的图形各部分与圆各部分的关系。

  五、教具学具准备:

  圆形纸片多媒体

  六、教学过程:

  (一)情境导入

  出示:圆桌照片

  师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?

  生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?

  师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?

  怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。

  【设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的学习任务】

  (二)合作探究

  1、复习转化方法:

  师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)

  师:我们以平行四边形为例,你还记得平行四边形面积公式的推导过程吗?(指名说、师投影演示)

  师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?

  师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:

  1、圆转化成了什么图形?2、转化后图形的各部分与圆的各部分有什么关系?3、根据转化后图形面积公式试着推导出圆的面积公式。

  2、小组合作探究,师巡视,指导。

  【设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。

  教师让学生带着3个问题进行自主探究的活动】

  3、汇报展示

  预设:

  学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的'公式:∏r2。

  学生方法2:将圆等分成若干份,拼成一个梯形或三角形。

  学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)

  板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。

  【设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。】

  4、课件演示,体验极限、化曲为直等数学思想。

  5、资料介绍,感受数学文化,师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的照片,并给出圆桌的半径是40厘米)

  生:一人板书,其他学生本上练习。集体订正。

  6、知识性小结:

  师:如果我们想计算圆的面积,必须知道什么条件?

  生:半径。

  师:还可以知道什么,也能求出圆的面积?

  生:圆的直径或圆的周长?

  师:怎么求?

  【设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。

  教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。】

  (三)解决问题:

  1、口算下面各圆的面积。

  2、填写下表。

  半径直径周长面积

  2厘米

  6厘米

  6。28厘米

  3、某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?

  (四)全课总结

  板书设计:圆的面积

  转化平行四边形面积=底×高

  联系圆的面积=×r=×r

  =πr×r=πr2

  公式S=πr2

《圆的面积》的教学设计10

  【教学目标】

  1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2.能够利用公式进行简单的面积计算。

  3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  【教、学具准备】

  1.CAI课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把。

  【教学过程】

  一、尝试转化,推导公式

  1.确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2.尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的.其它图形呢?(板书课题:圆的面积)

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  3.探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  4.推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,谁能首先告诉老师,这个长方形的宽是多少?

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  二、运用公式,解决问题

  1.教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  2.完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)

  3.教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。

  三、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  四、课堂作业。

《圆的面积》的教学设计11

  学情分析:

  《圆的面积》是人教版小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。在学习圆的面积之前,学生已经掌握其他平面图形的计算方法。这节课的目的就是让学生从平行四边形、长方形的面积计算方法和圆的面积的关系,总结出圆面积计算方法。此时这个阶段的小学生的认知特点是复杂的。竞争意识增强,敬佩优秀同学;接触自然、了解社会;加强预习,学会总结。认知也有所发展,在注意力方面,学生的有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都较低年级学生有不同程度的发展。在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,但具体形象记忆的作用仍非常明显。在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维活动仍然具有很大成分的具体形象色彩。在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。初入六年级的小学生是小学学习的最高、最后阶段。随着对小学教育的不断适应,这一时期的学生无论是在生理,还是心理上都比初入学时的儿童稳定,并在此基础上不断发展。刚入六年级的小学生的心理健康教育和学习目标归纳起来为:增强学习技能训练,培养良好的智力品质;引导学生树立学习苦乐观,激发学习的兴趣、求知欲望和勤奋学习的'精神;培养正确的竞争意识;鼓励参与社会实践活动,提高做事情的坚持性;建立进取的人生态度,促进自我意识发展。

  教学目标:

  1.了解圆的面积的含义,经历圆面积计算公式的推导过程【转换思想】,掌握圆面积的计算公式

  2.理解圆的面积的意义,掌握圆面积的计算公式,沟通圆与其他图形之间的联系,培养观察,操作,分析,概括的能力以及逻辑思维能力。

  3.培养认真观察,深入思考的良好思维品质,锻炼自己面对困难勇于克服,锲而不舍的精神。

  教学重难点:

  1,能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单的实际的问题

  2,圆面积的计算以及公式的推导

  案例描述:

  一、带入情境,引出问题

  1,出示课本中的草坪喷水插图,并提出问题,你能从中发现什么数学知识

  2,并进一步提出这个圆的面积是指这个图形的哪个部分

  3,最后开题~~~今天这节课我们就来学习圆的面积{板书;圆的面积}

  二、引入数学历史,增强学生浓厚的学习兴趣

  圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

  约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

  三、引入旧课,导入新课

  【引入】小学生们,前面我们学习过了正方形,长方形,甚至梯形面积等平面图形的面积的计算方法,那我们是不是可以通过动手把圆先切割再拼接成一个我们学过的图形。那么圆的面积不就是我们之前学过的图形的面积嘛。那我们准备工具看一下怎么样才能将圆拼接成一个我们所了解的图形。

  1,课件展示:请看大屏幕,分成16份的圆,把它们可以拼接近似成平行四边形,分成32等份,也可以拼成近似为平行四边形,而64等份呢,竟然可以近似为长方形,那你可以发现什么?【分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形】

  2,思考提问并总结圆面积计算公式的语言描述

  长方形的长相当于圆周长的一半,而长方形的宽相当于圆的半径

  3,提出圆面积的计算公式的问题,提问总结s=πr2

  4,利用公式,导入数学历史的有关文化,丰富学生的学习过程!!!!!!

  会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

  任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。如今有了电子计算机,圆周率已经算到了小数点后五万亿位小数了。

  四,熟记公式,并投入实践应用之中

  1,口答,根据半径计算出圆的面积

  R=1,R=2,R=3

  2,练一练

  r=8,s=;c=31,4,s=

  r=4,s=;d=16,s=

  3,那现在请大家回到本节课开始的时候,用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田

  4,第18页第2题

  让学生独立解答,集体修正的时候要求学生说出每一步计算过程和依据

  5,第18页第2题

  让学生理解题意之后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是一米的圆,让学生看看,并试着站一站

  6,课下思考

  用一根长3米的绳子,把一只羊拴在树杆上,羊的活动范围是多少?

  五,学生自我评价

  【小结】通过本节课的学习,你有什么收获和感悟?

  本节课,让我们通过计算,分析结果,总结圆面积的计算公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  六,【作业】随堂练习课后作业

《圆的面积》的教学设计12

  教学内容:

  冀教版六年级上册第四单元

  教学目标:

  1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。

  2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。

  3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。

  4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。

  教学重点:

  在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。

  教学难点:

  能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。

  教学流程:

  一、炫我两分钟

  大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即

  同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。

  出示口算题目。

  随机评价。

  相信我们都是有智慧有思想的人,我要为你们点赞(动作)。

  二、组内交流,完善梳理

  教师组织学生小组合作学习,引导孩子梳理圆的周长的`知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。

  【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】

  三、小组合作交流。

  组内交流尝试小研究。

  出示小组合作交流建议:

  1、组长组织本组成员有序进行交流。

  2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

  3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。

  4、再次确认发言顺序,准备全班交流。

  【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】

  四、班级交流,提升梳理

  1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。

  2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。

  【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】

  3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。

  师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。

  【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】

  五、应用拓展

  结合练习做相应题目,巩固易错易混知识。

  (一)基础题

  1、判断下面各题是否正确,对的打“√”,错的打“×”。

  (1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )

  (2)半径为2厘米的圆的周长和面积相等。 ( )

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

  2、一个圆的周长是25、12米,它的面积是多少?

  3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

  (二)拓展提高

  1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?

  2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?

  3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?

  【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】

  六、个人整理

  经过本课时的学习,你有哪些收获呢?

  【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】

《圆的面积》的教学设计13

  教学目标

  1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。

  2、能够利用公式进行简单的面积计算。

  3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学重难点

  教学重点:源面积计算公式的退到。

  教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。

  教学过程

  一、情景导入

  1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?

  所有的草坪铺满将是一个什么形状?

  那么求这个圆形草坪的占地面积就是求什么了?

  引导学生说出求这个圆形草坪的占地面积就是求圆的面积

  这节课我们就来研究圆的面积。

  板书:圆的面积

  师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?

  二、导入新课

  1、师生总结板书?圆的面积与什么有关?

  ?圆的面积怎么求?

  ?圆的面积有没有计算公式?

  2、师:看着老师手中两个不同大小的圆,是什么决定着他们的大小,那么可想而知,圆的面积大小与什么有关系?

  引导学生猜想说出圆的面积与半径有关

  板书:圆的面积与半径r有关

  师:到底是不是这样的了,接下来我们就来进行深入的探究。探究之前,请同学们回忆一下平行四边形的面积公式是什么?我们是怎样推导出他的面积公式的?对于三角形和平行四边形也是运用同样的方法推导出他们的公式的

  师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。

  板书:拼切——转化——化未知为已知

  师:那么你们可以把这种转化的思想运用于求圆的面积上吗?

  生:可以(不可以)

  师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。

  师:由于操作的局限性,我把大家拼接的.效果用电脑展示出来。

  首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。

  (平行四边形)

  第二次把它等分成16份,在拼接在一起,它更想什么了?接着把她等分成32份,拼接起来,你发现了什么规律?

  师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。

  板书:近似

  三、推导圆的公式

  师:我们已经成功地花园为方,看看数学方式就是这么神奇,但是圆的面积公式还是不知道。请同学们看着你们手中拼接好的圆以同桌为组思考这几个问题:?圆的面积和这个近似长方形的面积有什么关系?

  拼成的近似长方形的长和宽与圆的周长、半径有什么关系?

  你能以计算长方形的面积推导出计算圆的面积公式吗,尝试用“因为……根据……所以……”类似这样的关联词,把你的想法在小组中发展出来。板书:因为圆形的面积=长方形的面积=长×宽=1/2周长×半径

  所以圆的面积=R×RS=R

  这就我们今天要学习的圆的面积公式,从公示中得出,圆的面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。

  练习题

  1、求出下列圆的面积:

  2、圆形草坪的直径是20米,它的面积是多少平方米?

  3、练习十

  六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

  四、总结

  通过刚刚的练习题,我们知道了哪些条件就可以求出圆的面积了?通过这节课的学习,咱们都学会了哪些知识?

《圆的面积》的教学设计14

  教学内容:

  义务教育课程标准实验教科书六年级上册P67-68

  教学目标:

  1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。

  2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。

  3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点:掌握圆的面积计算公式,能够正确地计算圆的面积。

  教学难点:理解圆的面积计算公式的推导。

  教学过程:

  一、回忆旧知、揭示课题

  1、谈话引入

  前些日子我们已经研究了圆,今天咱们继续研究圆。

  2、画圆

  首先请同学们拿出你们的圆规在练习本上画一个圆。

  3、比较圆的大小

  请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?

  4、揭示课题

  我们把圆所占平面的大小叫做圆的面积。(出示课题)

  二、动手操作,探索新知

  1、确定策略,体会转化

  (1)明确研究问题

  师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。

  (2)体会转化

  怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的'重量)

  其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?

  预设:

  学生回忆平行四边形、三角形、梯形的面积推导方法。

  当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)

  三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)

  小结:

  你们有没有发现这些方法都有一个共同点?

  (3)确定策略

  那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?(……)

  如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的图形吗?那怎么办呢?(割补法)怎么剪呢?

  ①引导学生说出沿着直径或半径,把圆进行平均分;

  ②师示范4等份、8等份的剪法和拼法;

  2、明确方法,体验极限

  (1)学生动手操作16等份的拼法;

  (2)比较每一次所拼图形的变化;

  (3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。

  3、深化思维,推导公式

  (1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)

  (2)交流发现,电脑演示圆周长和长,半径和宽的关系。

  (3)多让几个学生交流转化后的长方形和原来圆之间的联系。

  (4)根据长方形的面积公式推导圆的面积计算公式。

  三、运用公式,解决问题

  1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?

  出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?

  2、判断对错:

  (1)直径是2厘米的圆,它的面积是12.56平方厘米。()

  (2)两个圆的周长相等,面积也一定相等。()

  (3)圆的半径越大,圆所占的面积也越大。()

  (4)圆的半径扩大3倍,它的面积扩大6倍。()

  3.知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?

  四、总结新知,深化拓展

  1.小结:

  通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。

  2、拓展

  在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)

  那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。

《圆的面积》的教学设计15

  教学目标

  1、掌握简单组合图形分解和面积的求法;

  2、进一步培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力;

  3、渗透图形的外在美和内在关系。

  教学重点:简单组合图形的分解。

  教学难点:对图形的分解和组合。

  教学活动设计:

  (一)知识回顾

  复习提问:

  1、圆面积公式是什么?

  2、扇形面积公式是什么?如何选择公式?

  3、当弓形的弧是半圆时,其面积等于什么?

  4、当弓形的弧是劣弧时,其面积怎样求?

  5、当弓形的弧是优弧时,其面积怎样求?

  (二)简单图形的分解和组合

  1、图形的组合

  让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力。

  2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积。

  以小组的形式协作研究,班内交流思想和方法,教师组织。给学生发展思维的空间,充分发挥学生的主体作用。

  归纳交流结论:

  方案1。S阴=S正方形-4S空白。

  方案2、S阴=4S瓣=4(S半圆-S△AOB)

  =2S圆-4S△AOB=2S圆-S正方形ABCD

  方案3、S阴=4S瓣=4(S半圆-S正方形AEOF)

  =2S圆-4S正方形AEOF=2S圆-S正方形ABCD

  方案4、S阴=4S半圆-S正方形ABCD

  ……………

  反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;②图形的美也存在着内在的规律。

  练习1如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少?

  分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成。

  解:连结AO,设P为其中一个三等分点,连结PA、PO,则△POA是等边三角形。

  说明:①图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积。

  练习2教材P185练习第1题

  例5、已知⊙O的半径为R。

  (1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;

  (2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数)。

  例5的计算量较大,老师引导学生完成。并进一步巩固正多边形的计算知识,提高学生的计算能力。

  说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关。实际上,古代数学家就是用逐次倍增正多边形的`边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值。从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积

  (三)总结

  1、简单组合图形的分解;

  2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算。

  3、进一步理解了正多边形和圆的关系定理。

  (四)作业教材P185练习2、3;P187中8、11。

  探究活动

  四瓣花形

  在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图(1)所示。

  再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图(12)所示。

  探讨:(1)两图中的圆弧均被互分为三等份。

  (2)两朵“花”是相似图形。

  (3)试求两“花”面积

  提示:分析与解(1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°。

  从而,∠ADP=30°。

  同理∠CDQ=30°。故∠ADP=∠CDQ=30°,即,P、Q是AC弧的三等分点。

  由对称性知,四段弧均被三等分。

  如果证明了结论(2),则图(12)也得相同结论。

  (2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图(1)的缩影。显然两“花”是相似图形;其相似比是AB﹕EF=﹕1。

  (3)花形的面积为:,。

【《圆的面积》的教学设计】相关文章:

圆的面积教学设计06-03

《圆的面积》教学设计03-06

圆的面积教学设计02-29

《圆的面积》教学设计与反思02-17

圆的面积教学设计15篇04-11

《圆的面积》教学设计方案范文09-10

圆的面积教学反思09-12

圆的面积教学反思15篇09-19

数学六年级《圆的面积》教学设计10-20