《圆柱的表面积》教学设计优秀【15篇】
作为一位无私奉献的人民教师,常常需要准备教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计要怎么写呢?以下是小编精心整理的《圆柱的表面积》教学设计,希望对大家有所帮助。
《圆柱的表面积》教学设计1
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学重点】掌握圆柱的侧面积和表面积的计算方法。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】
一、引入新课
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
二、探究新知
1、初步感知
(1)请同学们观察圆柱,想一想什么是圆柱的表面积。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)
(3)圆柱的表面积怎么求?(两个底面积+侧面积)
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报
(3)教师总结演示。
(4)推导圆柱侧面积公式
圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh
3、表面积
(1)总结表面积公式
怎么求圆柱的表面积?
圆柱的.表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2 )
三、巩固练习
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?
4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
四、总结收获
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
五、板书设计
圆柱的表面积
侧面积=底面周长×高
圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2
底面积×2 =2πr2
”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学重点】掌握圆柱的侧面积和表面积的计算方法。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】
一、引入新课
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
二、探究新知
1、初步感知
(1)请同学们观察圆柱,想一想什么是圆柱的表面积。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)
(3)圆柱的表面积怎么求?(两个底面积+侧面积)
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报
(3)教师总结演示。
(4)推导圆柱侧面积公式
圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh
3、表面积
(1)总结表面积公式
怎么求圆柱的表面积?
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2 )
三、巩固练习
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?
4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
四、总结收获
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
五、板书设计
圆柱的表面积
侧面积=底面周长×高
圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2
底面积×2 =2πr2
《圆柱的表面积》教学设计2
课题圆柱的表面积教时一3(3)
学习
目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
学习
重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
过程与方法
教师活动
一、基本练习
二、实际应用
求压路的面积是求什么?
三、实践活动
学生活动
说说计算方法。
说自己的想法,独立解答。
说自己的想法,独立解答。
学生讨论后完成。
学生实际操作。
板书设计
圆柱的表面积教学反思
学生掌握了求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。但是个别学生计算的不准。
课题圆柱的表面积教时一4(4)
学习
目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
学习
重点掌握求圆柱的侧面积、表面积的'方法,并能运用到实际中解决问题。
过程与方法
教师活动
实际应用
1、
2、
3、
学生活动
指名读题,说出题意以及解题思路,然后指名做出。
结合生活实际进一步明确题意,以便做出。
学生互评互议。
板书设计
圆柱的表面积
圆柱的表面积 = 圆柱的侧面积+底面积×2
教学反思
在实际应用中,简单的问题还能轻松完成。
《圆柱的表面积》教学设计3
一、引入新课:
1.引入。
师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具)
2.激发兴趣。
【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮?
师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?”
师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知。
1.什么是“圆柱的表面积”?
师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论)
师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积?
(生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书)
师:【课件演示这一过程】“你能用一个等式来概括这句话吗?”
师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积
也就是说,要求圆柱的表面积,必须知道哪两个条件?
2。圆柱的侧面积。
师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积)
①合作探究。
“请同学们利用自己手中的圆柱体,小组研究一下——圆柱的侧面积该怎么求?
学生分组探究。
②汇报交流。★※★※★
师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。
③.【课件演示变化过程】★师解说。
(贴出:圆柱的侧面积=底面周长×高 )
强化:“要求圆柱的侧面积,必须知道什么条件?”
3.学习例1。【课件出示】
一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。)
一人板演,全班齐练。
板演者讲解题思路。集体订正。
小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。
4.计算圆柱的侧面积。
请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。
【课件出示】
5.学习例2。
师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板?
①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么? 老师手中这个圆柱体一共有几个面? 三个什么面?
【课件出示例2图】
②独立试算:(一个板演,全班齐练。)
③指名讲解题思路。
④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。
⑤扩展:
a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积?
【课件出示例2改后的题】
b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢?
【课件出示例2改后的题】
学生口算。
★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?”
【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米?
d.指名说解题思路。
三.实际应用。
【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
①请同学们认真的`默读题,想想:题目让我们求什么?应该怎么求呢?
②强调“没盖”,“得数保留整百平方厘米。”
③独立计算。
④板演者讲解题思路。(讲清每步算的是什么)
⑤了解“进一法”。
★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。 因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”
⑥举一反三
师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?
【课件出示】
★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。
四.巩固练习。
1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。)
2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米?
3.回到引入题。
【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮?
如果要制作200个呢?制作1000个呢?
想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么?
师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗?
五.实践应用。
师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。)
“现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。”
六.全课小结:
师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获?
师:你有没有想提醒同学们注意的地方?
教学目标:
1.知识目标:
⑴.理解圆柱的侧面积和表面积的含义。
⑵.掌握圆柱侧面积和表面积的计算方法。
⑶.会正确计算圆柱的侧面积和表面积。
2.能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备:
1.教师、学生每人用硬纸做一个圆柱体模型、另备圆柱体实物。
2.多媒体课件。
《圆柱的表面积》教学设计4
【教学目的】:
1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
2、培养学生分析推理,解决实际问题的能力。
3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。
4、在计算机操作中培养学生的信息素养。
【教学重点】:
使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
【教学难点】:
在计算机操作中培养学生的信息素养。
【教具准备】:
计算机辅助教学课件一套。
【教学过程】:
一、创设情境,提出问题。
1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)
2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)
二、自由选择,自学新知。
1、电脑显示: 自学新知a 自学新知b
说明:在学习新的知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。
2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。
(展开侧面)
自学新知a:
(1)
长方形
底面周长
高
长方形面积=
圆柱的侧面积=
(2)
底面
底面
侧面
圆柱表面
(动画)
圆柱的表面积=
(3)小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
自学新知b:
(1)思考:把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。
长方形面积= ×
圆柱的侧面积= ×
(2)思考:圆柱的侧面积加上两个底面积就是圆柱的表面积,
所以:圆柱的表面积= +
(3) 小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
三、初步应用,尝试例题。
学生在学习完自学新知后,进入尝试例题:(注:每道例题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
电脑显示:
例1:一个圆柱,底面的直径是0。5米,高是1。8米,求它的侧面积。(得数保留两位小数)
例2:一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
例3:一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
提示学生在做完例3后,查阅知识点::这里不能用四舍五入法取近似值,在实际中,使用的`材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。
四、灵活选择,星级题库。
1、师说明:大家在做例题时,完成得都挺不错,下面就请大家把今天所学的知识运用到练习当中,这里有三星题库,题目依次由易到难,请每位同学根据自己的能力,自由选择一星、二星或三星。
2、生自由选择,有困难可以与老师、同学间交流。(注:每道练习题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
题库:
1、 一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积?
2、 一个圆柱,底面直径是2分米,高是45分米,求它的表面积?
题库:
1、 砌一个圆柱形的沼气池,底面直径是3米,深是2米,在池的周围与底面抹上水泥,抹上水泥的部分面积是多少平方米?
2、 一个压路机的前轮是圆柱,轮宽1。5米,直径1。2米,前轮转动一周,压路的面积是多少平方米?
题库:
1、 一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?
2、 一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的3/4,做这个水桶大约用铁皮多少平方分米?(用进一法取近似值,得数保留整十平方分米)
五、课外知识,开阔视野。
1、师:练习完成又快又好的同学,可以点击课外知识,查阅其它的数学知识。
2、学生点击课外知识:链接北京科教信息网
1、师小结本节课所学内容。
2、学生点击布置作业,查看作业内容:
给一个圆柱形罐头盒加外包装,在计算材料时,注意使用“进一法”。
《圆柱的表面积》教学设计5
一、设计理念
新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”
二、教学策略
1.创设生活情景,激励自主探索。
2.创建探究空间,主动发现新知。
3.自主总结规律,验证领悟新知。
4.解决生活问题,深化所学新知。
三、教材分析
《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。
四、教学目的:
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
五、教学难点:
理解和掌握求圆柱表面积的计算方法。
六、教具准备:
圆柱表面积展开模型电脑课件
学具准备:
易拉罐、白纸壳、剪子
七、教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)
(二)创设探究空间,主动发现新知
1、认识圆柱的表面积
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的!
师:各小组试试看,这位同学说的.对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积X 2 + 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形的面积 = 长 × 宽
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律,验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 πr h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)
(四)解决生活问题,深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
(评析:教师让学生合作学习,自主发现问题,交流解决。)
课件出示例四,读题明题意,学生试做,全班交流。
课件出示第16页第七题,学生试做,全班交流。
讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。
八、板书设计
S表面积=S侧+2S底
=2πrh+2πr
《圆柱的表面积》教学设计6
一、教案背景
“圆柱的表面积”是北师大版小学数学教材第十二册的内容,是在学生已有初步的几何概念,空间想象力的基础上进行教学的。教学目的在于通过教学活动,培养学生观察能力,勤于动脑,善于思考,培养以创新的思维解决开放性的问题,及合作学习的能力和对数学的学习兴趣。
学生课前准备:
(1)准备矿泉水瓶等一些圆柱形物品。
(2)自带小剪刀和图画纸。
二、教学课题
圆柱体表面积的教学是本单元的第二个主题活动,其前知识基础应该是圆柱体的认识和长方体、正方体表面积的认识和计算。
1、使学生理解圆柱体侧面积和表面积的含义。
2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
3、体验成功与失败的收获,体会合作的愉悦。
三、教材分析
《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元学习的内容主要有:圆柱和圆锥的认识、圆柱的表面积、圆柱和圆锥的体积等。根据教材的编写意图,圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。本课是学生已经认识了圆柱体的.特点以后进行的内容。
四、教学重点
通过学生操作演示,推导出圆柱侧面积、表面积的计算公式
五、教学难点
使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系。教学之前用百度在网上搜索《圆柱的表面积》的相关教学材料,找了很多教案和材料作参考,了解到教学的重点和难点,确定课堂教学形式和方法。然后根据课堂教学需要,利用百度搜索关于圆柱的视频,课堂放给学生观看,加深印象。用百度图片网上搜索下载一些圆柱的图片,培养学生读图识别能力。通过百度在网上搜索一些关于圆柱的文字资料和图片资料,做成PPT课堂给同学们演示,生动直观、活泼有趣地学习本课。
六、教学方法
情境教学法、实践操作法、迁移类推法
1、生用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?
2、能用已有的知识计算它的面积吗?
七、教学过程
(一)创设情境,激趣导入
【设计意图:本环节通过出示生活中一些圆柱体图片,创设情境,并通过师生对话交流,
激起学生求知欲,让学生饶有兴趣的步入本节课的殿堂。】
教师提问:认识这些物体吗?
学生回答:圆柱体
教师谈话:那我们本节课就再次走入圆柱的世界,去探索它的表面积。(板书课题)
(二)自主探索,发现问题
【设计意图:本环节将数学与实际生活密切联系在一起,利用百度视频—圆瓶贴标机,让学生感受到圆柱的侧面是哪一部分,并通过学生动手操作,从而让学生清楚的知道了圆柱侧面展开得到的图形,从而顺利的解决了重难点】
圆柱的侧面积
学生回答:(给圆柱形瓶子贴标签)
教师提问:标签的面积应该是圆柱的什么面积呢?
学生回答:侧面积
教师谈话:那我们就一起用手中的实物瓶子来一起操作吧。
1、用喜欢的方式,将个人的瓶子的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)
(展开的形状可能是长方形、平行四边形、正方形等)
独立操作后,与小组里的同学交流。
2、能用已有的知识计算它的面积吗?
先计算一个瓶子需要的包装纸,自己操作测量,进行动手学习活动,教师进行巡视指导。
3、小组汇报。
重点感受:圆柱体侧面如果沿着高展开是一个长方形。
教师提问:这个长方形与圆柱体有什么关系?学生回答:长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。
(课件展示)
长方形的面积=圆柱的侧面积
即长×宽=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
教师提问:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
4、解决问题:
10000瓶矿泉水,需要用多少平方米的包装纸呢?
小组交流:只解决1个瓶子的包装纸的面积即可
圆柱表面积
1、教师提问:出示主题图:做一个圆柱形纸盒,需要多大面积的纸板?
这一事件从数学角度看,是个怎样数学问题?
学生回答:求圆柱表面积
教师引导学生说一说圆柱体表面展开图是什么样的,教师再出示圆柱体展开图
2、教师提问:圆柱体的表面积怎样求呢?
学生得出结论:圆柱的表面积=圆柱的侧面积+底面积×2
3、学生独立解答,汇报想法。
(三)巩固练习,实际应用
【设计意图:本环节则是让学生将新学到的知识与实际相结合,充分体现了“数学来源于生活,服务于生活”的思想,进而巩固新知。】
一根圆柱底面直径是2米,高3米,表面积是多少?
(四)回顾全课,加深印象
【设计意图:本环节的设计是让学生通过自己谈收获,从而抓住本节课的学习重点,也梳理了知识的头绪。】
(1)圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
(2)要求一个圆柱的表面积,一般需要知道哪些条件()
(五)开阔视野,课外延伸
【设计意图:本环节我则利用了百度搜索的强大功能,寻找到所需要的习题,让学生走出书本的束缚,开阔了知识面,从而达到举一反三的目的。】
出示课外习题
板书设计:
圆柱体的表面积
圆柱的侧面积=底面周长×高→S侧=ch
↓↑↑
长方形面积=长×宽
圆柱的表面积=圆柱的侧面积+底面积×2
八、教学反思
本节课充分利用了百度搜索功能,并与教材有机的结合,突出了重点,解决了难点。教学中采用操作和演示、讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练相结合。
1、把握重点,突破难点,合理利用教材
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。
3、讲解与练习相结合
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
《圆柱的表面积》教学设计7
一、创设情境,悬念导入。
上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?
板书课题:圆柱的表面积
二、合作探究,发现方法。
1、圆柱的表面积包括哪些面的面积?
2、研究圆柱的侧面积。
(1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?
(2)学生想办法亲自验证。
(学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)
师问:①剪、拆的过程中你有什么发现?
②长方形的长当于什么,宽相当于什么?
③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?
(3)推导圆柱体侧面积的计算公式:
通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽
所以:圆柱的侧面积=底面周长×高
3、明确圆柱的表面积的计算方法。
师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?
板书:圆柱的表面积=圆柱的侧面积+两个底面的面积
三、实际应用
现在你能求出做这样一顶厨师帽需要多少面料吗?
出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
1、引导:①求需要用多少面料,实际是求什么?
②这个帽子的表面积 的是什么?
2、学生同桌讨论,列式计算,师巡视指导。
3、汇报计算情况。
板书:帽子的`侧面积:3.14×20×28=1758.4(cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4≈20xx(cm2)
答:需用20xxcm2的面料。
四、巩固练习:课本第14页“做一做”。
五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。
六、作业:课内:练习二第5、7题;课外:练习二第6、8题。
附:板书设计
圆柱的表面积
长方形的面积= 长 × 宽
圆柱的侧面积=底面周长 × 高
圆柱的表面积=圆柱的侧面积+两个底面的面积
例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
帽子的侧面积:3.14×20×28=1758.4cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4
≈20xx(cm2)答:需用20xxcm2的面料。
《圆柱的表面积》教学设计8
课前先学——
课前,教师让学生在家做三件事:(1)自己动手制作一个圆柱;(2)写出制作的步骤;(3)制作过程中有什么发现?
课上对话——
师:谁来说说你是怎么做圆柱的?(听到老师这个提问,我在想教学从学生经历的实践体验入手,值得肯定)
生:我准备了三张纸、圆规和剪刀,……(这么自信的表达,一定很多有价值的内容,倾听,延伸,提炼,概括,问题一样得到解决。这课有听头)
师:你直接说出步骤。(这么无情地打断学生的讲话,有些失望)
生:我先准备纸,然后就卷成圆筒,再剪两个底面,就做出来了。(这是个应变能力很强的学生,老师要什么,他就能给什么。其间省略太多东西了)
师:好的。(这里的“好的”起着语言过渡的作用,然而,学生操作经历的概括,是否有助于理解圆柱的侧面和底面之间的关系,教师并没有关注)
师:侧面的长和底面的周长有什么关系?(看得出教师最急于提的是这个问题,也难怪,这个一个所有教案中都会出现的问题)
生:相等。
师:是这样吗?请你把它剪下来。(“剪下来”的行为怎么不是学生为了说明问题的主动行为,而是教师为了板书和讲解发出的指令)
(学生刚拿出剪刀,老师就一把接了过来,把学生精心制作的圆柱剪开,贴在黑板上。有些学生小声说道:“真可惜。”)
师:同学们,你们看,(这是老师讲解前常说的一句话)这个圆柱的侧面展开是一个长方形,长方形的长等于圆柱底面的'周长,长方形的宽等于这个圆柱体的高。(迫不及待地告诉,自我中心意识强)圆柱的表面积你们会算了吗?(一句口头禅式的提问,不用想都会知道学生会怎么回答)
生齐答:会了。(真的会了?还是应付老师的齐答)
如此“快节奏,高效率”的教学,看起来过程顺利,但是教师主导的课堂,能否实现教学目标,不得而知。
再读文本——
拿起教师的教学用书,我们读到了,本节课的教学还应实现这样的教学目标:
1、让学生探索研究长方形的长和宽与圆柱的关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高;
2、在如何计算侧面积的推理过程中,锻炼形象思维和抽象思维,培养空间观念;
3、指导并训练学生规划解决问题的步骤,形成解决问题的思路。
对话学生——
课后,找到那位说制作步骤的学生,和他有了这样的对话:
师:现在愿意跟我们说说圆柱的制作过程吗?
生:老师根本没有让我把话讲完,其实为了今天的发言,我昨晚就准备了。制作圆柱其实并不容易,特别是制作规定底面和高的圆柱。我和同学们,基本都是先用一张长方形的纸做出圆柱的侧面,然后再用这个圆筒画出两个圆,作为圆柱的底面。这样制作看起来任务是完成了,但算圆柱的侧面积和底面积都不太方便。如果要是让我再制作一个,我会先量出长方形的长和宽,如果用宽作为高,这个长就要用两次,一次是用来求侧面积,一次用来算底面积,因为我发现长方形的长就是圆柱底面的周长。
师:你的发现,全班学生都会发现吗?
生:我相信我们班上有不少同学并没有很好的理解。
师:那怎么办?
生:老师不是在黑板上讲了吗?没理解的就背公式呗。
生:老师,我们在课前还讨论过这样的问题,就是为什么全班学生做出的圆柱都是瘦瘦高高的,身材都那么好。其实很多人做圆柱时,都是用长方形的长作高,宽的长度才是底面的周长,我并不赞成老师说:圆柱体侧面展开是一个长方形,长相当于底面周长,宽相当于圆柱的高。应该说:圆柱体侧面展开是一个长方形,长方形的长和宽中的一条边相当于底面周长,另一条边相当于圆柱的高。
《圆柱的表面积》教学设计9
教学目标:
(一)知识目标
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力目标
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点:
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点:
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备:
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……
师:我坚信你们一定不会让老师失望的。
一、引入新课:
师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的`我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积
师生小结:圆柱的表面积=底面积×2﹢侧面积
3、反馈练习
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)
《圆柱的表面积》教学设计10
【教学目标】
1、使学生理解圆柱体侧面积和表面积的含义。
2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
3、体验成功与失败的收获,体会合作的愉悦。
【教学重点】动手操作展开圆柱的侧面积
【教学难点】圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
【教具准备】圆柱表面展开电脑动画展示
【学具准备】圆柱形茶叶罐、自制的圆柱体纸盒2个、剪子、尺子。
【教学过程】
一、创设情境,引起兴趣。
1、同学们曾经自己研究出长方体和正方体表面积的计算方法,回忆一下,当时大家是怎样推导这些立体图形表面积的?(学生会想将图形表面展开)
2、拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?
怎样求这个茶叶罐用多少铁皮?(体会就是求圆柱表面积。在学生跃跃欲试的时候进行下一步的操作活动)
二、自主探究,发现问题。
研究圆柱侧面积
拿出自制的圆柱体纸盒,1.猜想将它的侧面展开,会是一个什么样的图形。
2.独立操作用自己喜欢的方式展开,验证刚才的猜想。
“用自己喜欢的方式”展开可能会出现很多种可能,比如斜着剪、拐弯剪等,对各种可能情况的`处理方式教师应该做到心中有数。
3.观察对比观察这个图形各部分与圆柱体有什么关系?
4.小组交流能用已有的知识计算它的面积吗?
5、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积
即长×宽=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧==C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2πr×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的第二个圆柱纸盒用此法展开)
研究圆柱表面积
1、求茶叶罐用多少铁皮,就是求什么呢?如何求?试一试。
学生测量,计算表面积。
2、圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积=圆柱的侧面积+底面积×2
3、动画:圆柱体表面展开过程
三、实际应用
1、填空
圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
2、要求一个圆柱的表面积,一般需要知道哪些条件()
3、教材第六页试一试。
四、回顾全课
本节课你收获了什么,有什么遗憾。
【板书设计】
圆柱体的表面积
圆柱的侧面积=底面周长×高→S侧=ch
长方形面积=长×宽
圆柱的表面积=圆柱的侧面积+底面积×2
《圆柱的表面积》教学设计11
教学内容:九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:根据实际情况来计算圆柱的表面积。
设计理念:教学中注意让学生在引导中发现与理解圆柱的侧面积和表面积的计算方法。先从学生的实际生活入手,通过操作、观察与推理,理解商标纸的面积就是圆柱的侧面积。在此基础上,再引导学生在方格纸上画出圆柱表面积的展开图,利用表象来尝试归纳计算方法。自主实验、自主探索、自主概括是本课的基本特征。
教学步骤教师活动学生活动
一.复习回忆一、复习
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
学生回答后,板书:长方形的面积=长×宽.
回忆特征,口答。
二.自主探索,一、认识侧面积的意义和计算方法。
1.出示例2的.情景图,引导学生思考:商标纸的面积大约是多少平方厘米,就是求圆柱的什么?
2.学生拿出课前准备的类似例2的物体,摸一摸,看一看,理解得出商标纸的面积就是求圆柱的侧面积。
师板书:圆柱的侧面积
3.操作实验,认识侧面积的计算方法。
(1)请学生先想一想,如果把圆柱侧面的商标纸沿高剪开再展开,它会是什么形状?
(2)学生拿出贴有商标纸的学具饮料罐,沿着它的一条高剪开,然后展开,观察是什么形状。
(3)引导生观察,进一步思考得到的商标纸的长和宽跟圆柱体有什么关系呢?如何计算商标纸的面积?
(4)概括提升:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?
师板书:
圆柱的侧面积=底面周长×高
长方形的面积=长昂×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
二、认识表面积的意义和计算方法。
1.出示例3。让学生对照直观图,说说圆柱的侧面和底面的位置,同座互相用学具指一指。
2.思考:沿高展开后得到的长方形的长和宽分别是多少厘米?两个底面分别是多大的圆?
3.要求:闭上眼睛想一想,圆柱的展开图是什么形状?
4.试一试,在书中的方格纸上画出这个圆柱的展开图,再将学生所画的展开图进行交流与展示。
5.观察展开图,想一想圆柱表面有哪些部分组成?
6.教师小结,指出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。
师板书:圆柱的表面积。
7.引导学生概括:怎样计算圆柱的表面积?圆柱的表面积与侧面积有什么关系?
师板书:圆柱的表面积=侧面积+两个底面积
8.学生在小组里讨论,然后算一算这个圆柱的表面积。教师注意指导学生的答题格式。
生独立思考
学生动手操作
学生联想
动手操作
仔细观察、归纳、概括
学生联想,师相机指导。
独立练习
学生用学具指
借助学具独立思考
学生进行空间想象
学生在方格纸上画
学生进行归纳、概括
先讨论,再独立算,然后交流汇报
三.巩固应用
1.完成“练一练”第2题
可以先让学生分别算出有关圆柱的侧面积和底面积,再算出侧面积与两个底面积大和。
2.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
3.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?学生独立练习
小交流,再练习
四.总结反思1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?畅谈体会。
发散思考
《圆柱的表面积》教学设计12
【教学内容】:
p13-14页例3-例4,完成“做一做”及练习二的部分习题。
【教学目标】:
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
【教学重点】:
理解求表面积、侧面积的计算方法,并能正确进行计算。
【教学难点】:
能灵活运用表面积、侧面积的有关知识解决实际问题。
【教学过程】:
一、以旧引新
1.圆柱体有()个面,分别是()、()、()。
2.圆柱体上底和下底之间的距离,叫做(),有()条。
3.长方形面积=()×()
圆的周长=()c=()
圆的面积=()s=()
二、新课
1.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
①这两道题分别已知什么,求什么?
②计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3.理解圆柱表面积的含义.
(1)让学生把自己制作的'圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①帽子的侧面积:3.14×20×28=1758.4(平方厘米)
②帽顶的面积:3.14×(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2.练习七第6题。
【板书】:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:①帽子的侧面积:3.14×20×28=1758.4(平方厘米)
②帽顶的面积:3.14×(20÷2)2=314(平方厘米)
③需要的面料:1758.4+314=20xx.4≈20xx(平方厘米)
答:需要用20xx平方厘米的面料。
《圆柱的表面积》教学设计13
(1)计算圆柱体的表面积:教材14页做一做(强调作业格式要求:分三步,首先分别求出侧面积和底面积,最后求表面积)
(2)底面直径6分米,高2分米。
(3)底面周长12.56米,高3米。
三.课堂作业:练习二第6题。
家庭作业:练习二第14题求表面积部分。
第二课教学反思
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。即使我建议学生们制作了1——100的派表,可练习六第1题需要用到192派,第2题需要用到6.25派,这些结果从派表中都无法查找到结果,必须计算。三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
补充资料:
妙算圆柱的表面积
我们都知识:圆柱的表面积=底面积×2+侧面积
这里,向同学们介绍另一种计算圆柱体表面积的方法。
我们把两个底面分别剪成8个相等的扇形(剪成的扇形越多越精确),取其中一个扇形再平均分成两个小扇形。把这些扇形贴紧长方形的长拼成一个近似的长方形,与原来侧面展开的长方形拼成一个大长方形。(因为我的绘图能力有限,所以图略。)
这个大长方形的面积就是圆柱体的表面积,它的长是圆柱体的底面周长,它的.宽是圆柱的高与底面半径的和。这样就可以得到另一种计算圆柱体表面积的公式,即:
圆柱体的表面积=圆柱的底面周长×(高+底面半径)
小朋友,你能用两种不同的公式解答下面的题目吗?
一个圆柱形铁皮油桶,高1.5米, 底面直径0.8米, 做这个没桶至少用铁皮多少平方米?
《圆柱的表面积》教学设计14
教学内容:
九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:
1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:
根据实际情况来计算圆柱的表面积。
教学过程:
一、复习
下面()图形旋转会形成圆柱。
二、认识侧面积的意义和计算方法。
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
三、认识表面积的意义和计算方法。
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
⑴各自练习,并指名板演。
⑵对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?
想一想:如果知道的是圆的周长呢?
四.总结反思
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
畅谈体会。
五、巩固应用
1.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?
教学反思:
本节课的`教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
《圆柱的表面积》教学设计15
【教学内容】
P13-14页例3、例4,完成“做一做”及练习二的部分习题。
【教学目标】
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
【教学重点】
掌握圆柱侧面积和表面积的计算方法。
【教学难点】
运用所学的知识解决简单的实际问题。
【教学准备】
多媒体课件
【自学内容】
学习提示:
(1)长方体、正方体的表面积指的是什么?
(2)圆柱的表面积指的是什么?
(3)圆柱的底面积你会计算吗?侧面积呢?
(4)你知道侧面的形状以及长、宽与圆柱的`关系吗?
【教学预设】
一、自学反馈
1、求下面各圆柱的侧面积
(1)底面周长2.5分米,高0.6分米
(2)底面直径8厘米,高12厘米
2、求下面各圆柱的表面积
(1)底面积是40平方厘米,侧面积是25平方厘米
(2)底面半径是2分米,高是5分米
二、关键点拨
1、圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2、侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3、理解圆柱表面积的含义。
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4、教学例4
(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=20xx.4≈20xx(平方厘米)
5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
三、巩固练习
1、做第14页“做一做”。(求表面积包括哪些部分?)
2、练习七第6题。
四、分享收获畅谈感想
这节课,你有什么收获?
五、板书:圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
例4:①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想
反思与体会
【《圆柱的表面积》教学设计】相关文章:
圆柱的表面积教学设计05-16
《圆柱的表面积》教学设计07-22
《圆柱的表面积》教学设计05-15
圆柱表面积的教学设计范文04-13
《圆柱的表面积》教学设计15篇03-18
《圆柱的表面积》教学反思04-14
圆柱的表面积教学反思15篇01-04
六年级数学《圆柱的表面积》教学设计12-12
《圆柱体》教学设计06-02