《平均数》教学设计

时间:2024-04-19 11:56:30 教学设计 我要投稿

《平均数》教学设计

  作为一名辛苦耕耘的教育工作者,总归要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的《平均数》教学设计,希望能够帮助到大家。

《平均数》教学设计

《平均数》教学设计1

  第一课时

  教学内容:

  教科书第43页例1及相关练习

  教学目标:

  1、体悟“平均数”的实际意义。

  2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。

  3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。

  4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

  教学重点、难点:

  灵活选用求平均数的方法解决实际问题。理解平均数的意义

  教具、学具准备:

  PPT等

  教学流程:

  一、谈话引入、初步感知平均数

  1、学生交流课前收集到的有关平均数的信息。

  2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?

  3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的`奥秘。 板书:平均数 你想了解平均数的哪些知识呢?

  4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。

  二、构建新知

  1.理解含义,探求方法。

  观察棋子,提出问题。(多媒体显示)

  师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?

  2、感悟“平均数”的实际意义。

  动手操作:以小组为单位研究怎样才能使三排棋子同样多。

  师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?

  这个平均数4与原来每排棋子的个数有什么关系呢?

  3、探索求平均数的不同方法。

  师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!

  ①小组活动讨论。

  ②汇报交流。(生说方法多媒体显示棋子移动过程)

  移多补少! 先假设后均分。先求和再均分。

  三、初步应用,内化拓展。

  师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?

  四、课堂总结

  1、你现在所认识的平均数是什么?

  2、理解平均数是个虚的数。

  五、随堂作业

《平均数》教学设计2

  教学目标:

  1、使学生理解“平均数”的含义。

  2、使学生掌握求平均数的方法。

  3、培养学生的实践能力。

  重点难点:

  1、理解“求平均数”的含义,掌握求“平均分”的方法。

  2、区分“平均分”与“求平均数”这两个概念的不同含义。

  教具学具:

  主题图,小棒

  教学过程:

  一、学前准备

  1、 口算。

  48÷8= (1+3+5)÷3= (5+5+4+6)÷4=

  2、 口答。说一说,48÷8和(1+3+5)÷3分别表示的意义。

  3、 列式计算。把24名同学平均排成4队,每队有多少人?

  4、 导入新课。

  说说“平均”是什么意思?什么是“平均分”?结果所得到的数“6”,这个数你能给他名字吗?在现实生活中,求平均成绩、平均身高、平均体重的情况有很多,今天我们就来共同研究“求平均数”的问题。(板书题目)

  二、探究新知

  1、 讲述平均数的含义。

  把一个总数平均分以后得到的结果。

  平均数怎样求呢?

  2、 出示主题图。

  (1)看懂图意。

  回收小组成员小红、小兰、小亮和小明分别收集了14个,12个,11个,15个矿泉水瓶,这个组平均每人收集了多少个矿泉水瓶?

  (2)学生找出已知条件和问题。

  讨论:怎样理解“平均每人收集了多少个矿泉水瓶”?

  (3)汇报讨论结果。

  进一步明确:“平均每人收集的个数”并不是每个人收集的实际个数,而是在收集总数不变的情况下,假设每个人收集相同个数的值。

  (4)引导学生看图。

  提问:怎样做才能使四个同学收集的个数同样多?

  (5)学生操作。

  学生拿出小棒,1根小棒代替1个矿泉水瓶,先按每个人收集的个数摆放,再动脑动手操作,使四个人收集的个数相等。

  (6)汇报操作结果。

  学生甲:我先数出共有多少根小棒,共52根,再把52平均分成4份,52÷4=13(根),就得出每个人平均收集的.个数是13个。

  学生乙:运用“移多补少”的数学思想,从小红的14个里取出1个给小兰,从小明的15个里取2个给小亮,就可以直接得到4个人都相等的瓶子个数。

  (7)小结操作结果。

  通过同学们的操作,我们得到4个人平均收集的瓶子数是13个。但通过操作,我们发现,4个人收集矿泉水瓶的个数发生了变化,这4个人收集的矿泉水瓶的个数才相等。也就是说,平均数得到了,而原来4人收集的个数都发生了变化。在现实生活中,很多求平均数的情况是不允许改变原数的。

  例如:求两个人的身高,并不是把高个儿截下一部分来,接在矮个儿身体上,使两人身高相等。也就是说,求平均数并不要求改变原来的实际值。由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的。

  如果我们不通过操作,直接通过计算,能不能求出这4个人平均收集的个数?

  (8)引导学生合作探究。

  (9)汇报探究结果。

  应先相加求出收集到的总数,再用总数除以人数,得到平均数。

  (10)指导学生列式计算。

  (14+12+11+15)÷4

  =52÷4

  =13(个)

  3、 我们学习了如何求平均数,下面我们自己动手算一下上个学期我们学校进行了1分钟跳绳比赛,我们找了几个同学的跳绳成绩,咱们一起来算算他们平均跳了多少次?

  (单位:次)

  杨扬

  李信芳

  陈希

  郑钟一

  刘安娜

  刘严

  99

  106

  102

  104

  140

  103

  (99+106+102+104+103)÷6

  =654÷6

  =109(次)

  点名让学生说明什么是“总数量”“份数”“平均数”

  三、课堂作业新设计

  教材第44页练习十一的第2题。

  (1) 读题,理解题目要求。

  (2) 把统计表填完整。

  (3) 独立计算。

  (4) 提问:怎样求出平均最高气温和最低气温?

  四、知识扩展

  说一说平均数在实际生活中的应用

  (1) 家庭中人的平均身高、平均岁数、平均住房面积

  (2) 作业本的平均每页字数

  (3) 最近一周的平均温度

  (4) 考试之后知道各科的得分求平均分

  (5) 捐款

  五、课堂小结

  谈谈你自己的收获。

《平均数》教学设计3

  教学目标:

  1、在具体的比赛、统计、观察等活动中,了解平均数的实际意义。

  2、探索掌握求平均数的方法,体会解决问题策略的多样化。

  3、密切数学与生活的联系,增强学生的应用意识,培养学生分析数据、发现问题的能力。

  教学重点:理解平均数的实际意义,掌握求平均数的方法。

  教学难点:理解平均数的实际意义。

  教学过程:

  活动(一)、情境激趣(渗透数学源于生活实际的思想)

  1、谈话引入

  师:今天我们在这里上一节数学课,同学们想一想,我们学校课间开展最多的是哪项体育活动?

  师:对了,是踢毽子。现在老师告诉大家一个好消息,听体育老师说,下个月学校将举行踢毽子比赛,去年我们班获得第一名,今年同学们还想不想争冠军?

  师:光说不练不是好汉,今天我们就先在班级开展一次男女生踢毽子比赛,好不好?

  2、队员入场

  师:下面就请我们的队员入场!(男女各四人)

  3、采访队员

  师:每逢大赛总有记者采访,今天老师也当把记者,采访一下我们的运动员。女士优先,请问女同学,你们想不想赢?再问一下男同学,你们想不想输?

  4、同学猜想

  师:刚才,女同学说想赢,男同学说不想输。那么,我想请同学们先猜想一下,是男队会赢还是女队会赢?

  5、举手表决

  师:这样说老师一点也听不清,这样吧,请支持男队的举手,请支持女队的举手,支持率还真差不多,看来还真得到赛场上见!

  6、裁判入场

  师:下面就请我们的裁判员入场!

  7、踢毽子比赛

  师:下面老师宣布比赛规则:每名运动员的踢毽子的时间是20秒,踢坏了可以接着踢,记总数。请裁判员做好记录。

  活动(二)、探索意义(初步理解平均数的现实意义)

  1、同学计算

  师:现在比赛结束了,怎样才能知道哪个队会获胜呢?

  师:既然人数相同,我们可以用总数比较,下面就请同学们算一下男队和女队各踢了多少个?

  2、宣布比赛结果

  师:谁来说一说你是怎样计算的?

  学生汇报,老师板书

  师:女队一共踢了120个,男队一共踢了116个,因为120>116,所以比赛获胜的是女队!

  3、老师参与

  师:看到同学们踢的这么开心,王老师也想踢一次,现在王老师申请加入男队,请同学们帮老师看时间。

  4、再次公布比赛结果。

  师:这回请同学们再算一算男队一共踢多少个?

  学生汇报结果

  师:再来看女队一共踢了120个,男队一共踢了136个,因为120<136,所以现在老师宣布:男队获得了这次比赛的胜利。

  5、激起矛盾

  师:老师看到男同学得意洋洋,而女同学直喊不公平,谁能说一说为什么不公平?

  6、出现问题

  师:问题出现了,人数不同时,比总数不公平,可是在我们的生活中,这样的事情却经常发生,此时此刻,你有什么新的想法吗?

  7、引出平均数

  生:既然人数不同,比总数肯定不公平,我们可以比平均数。

  师:那么这节课我们就来学习《平均数》,(板书课题)

  师:平均数是怎么回事,以这次比赛为例说一说。在小组内先讨论一下。

  学生小组讨论、汇报

  8、猜想结果

  师:我们再以女队为例,请同学们猜想一下,女队的平均数会在什么范围?

  师:那男队呢?

  9、计算完成

  师:下面就请同学们试着求一求男队和女队踢毽子的平均数,一方面来验证一下我们的猜想是否正确,另一方面我们来比较一下哪个队会获胜。

  师:谁来说一说你是怎样计算的`?

  学生汇报

  师:同学们看一下我们的猜想是否正确?

  10、学生初步理解平均数

  师:刚才我们分别用两个队踢毽子的总数分别除以它们的人数,求出了两个队平均每人踢的数量,我们用这两个数描述了两个队的平均水平,也就是这两个队的平均数。哪个队的整体水平高一些呢?

  11、再次宣布比赛结果,(对学生进行失败教育)

  师:这回我宣布获胜的还是女队。看来王老师在踢毽子方面也是一个弱者,也没能帮助男获胜。王老师要向男同学们说:胜败乃兵家常事,再说失败乃成功之母,课间我们继续练习,争取下次比赛我们获胜。

  12、再次理解平均数的含义

  师:同学们看黑板,刚才我们通过计算,求出了两个队的平均数,看这两个平均数是30和27.2,你们能不能再说一说,它们到底是一个怎样的数?它是不是就是每个人实实在在踢的数量?

  13、总结求平均数的方法

  师:我们理解了什么是平均数,谁再来说一说怎样求平均数?

  学生回答,老师板书

  14、理解平均数的用途

  师:刚才的比赛人数不同,我们比总数,你们觉得不公平,这时,平均数出现了,你们评价一下,学习平均数有什么用?

  15、理解平均数的现实意义

  师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。

  活动(三)解决实际问题。(进一步探索求平均数的方法,理解平均数在生活中的实际意义,培养学生的自学能力)

  1、探索移多补少法

  师:同学们举了那么多有关平均数的例子,看来平均数真能帮我们解决许多实际问题。现在就有一个同学们愿不愿意帮老师解决?

  学校开展环保活动,小红、小兰、小亮、小明四名同学分在一个小组,他们利用课余时间收集矿泉水瓶,数量如下:小红14个,小兰12个,小亮11个,小明15个。老师把他们收集的数量制成了统计图,请同学们先观察统计图,再求一求他们小组平均每人收集多少个矿泉水瓶?

  学生解答

  师:你是怎样计算的?还有不同的想法吗?

  学生汇报

  小结:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。同学们今后在求平均数的问题时,可以用计算的方法,也可以用移多补少的方法。

  2、自学书中例2

  师:请同学们把书翻到43页,自己学习这一页的内容。

  师:通过自己学习你知道了些什么?

  3、质疑问难

  师:这节课我们学习了有关平均数的知识,对这节课的知识还有没有不明白的地方或有什么问题要问?

  活动(四)综合练习

  1、小明也特别喜欢踢毽子,他连续踢了三次,成绩是29个,30个,28个,请你求一求他平均每次踢多少个?

  不同方法解答

  2、对比练习(理解平均数和平均分的区别)

  (1)老师把9支铅笔平均奖励给踢毽子比赛获一等奖的3名同学,每人获得几支铅笔?

  (2)老师把9支铅笔奖励给踢毽子比赛获得前三名的同学,平均每人获得几支铅笔?

  先解答,再比较一下这两道题有什么相同点和不同点?

  老师小结:(1)题是把9支铅笔平均奖励给踢毽子比赛获一等奖的3名同学,每人实实在在获得3支铅笔,这是我们以前学过的平均分。

  (2)题是把9支铅笔奖励给踢毽子比赛获得前三名的同学,平均每人获得3支铅笔,不是每人都是3支,可能是2支、3支、4支,这是我们这节课学习的平均数。

  3、大屏幕出示超市销售甲、乙两种饼干情况的统计图。

  (1)哪种饼干第一季度的月平均销售量多?多多少?

  (2)如果你是超市经理,第二季度你会怎样进货?

  (3)分析一下乙种饼干销售量越来越好的原因。

  活动(五)总结

  师:通过这节课的学习,你有哪些新的收获?

  师:既然同学们有这么多的收获,老师就留个作业,今天我们在这里上了一节数学课,请你对我们这节课上的是否满意(或成功)打一下分,满分是十分,回去后在小组内求一求平均分。下节课我们一起交流。

  板书设计(略)

《平均数》教学设计4

  一、教学目标

  (一)知识与技能

  理解平均数的意义,初步学会简单的求平均数的方法。

  (二)过程与方法

  学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。

  (三)情感态度和价值观

  感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

  二、教学重难点

  教学重点:理解平均数的含义,掌握求平均数的方法。

  教学难点:借助“移多补少”的方法理解平均数的意义。

  三、教学准备

  课件、实物投影。

  四、教学过程

  (一)创设情境

  1.谈话引入。

  以幻灯片形式出示教师家的书橱。

  现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。

  2.感知课题。

  (1)学生思考,想象移动的过程。

  (2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?

  (3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。

  今天,我们就来认识一下“平均数”这个新朋友,好吗?

  (板书:平均数)

  (二)探究新知

  1.引发质疑,探索新知。

  教师:看到这个课题,你想通过这节课学习到哪些知识?

  预设:

  (1)平均数是一个什么数?

  (2)怎样计算平均数?

  (3)平均数在生活中有什么用?

  2.理解含义,探求方法。

  出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。

  仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?

  预设:

  (1)小红比小兰多收集多少个瓶子?

  (2)小明再给小亮几瓶,他俩的瓶子就一样多?

  (3)他们平均每人收集了多少个瓶子?

  你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的.瓶子数量一样多呢?

  学生汇报交流。

  小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。

  小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。

  (14+12+11+15)÷4=13(个)。

  【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。

  3.理解平均数的含义。

  教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?

  引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。

  小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。

  教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。

  预设:

  (1)本周平均最高气温6摄氏度。

  (2)三年级学生的平均身高是140厘米。

  (3)四年级2班五位同学平均每人捐10本图书。

  (4)李莉同学平均每天上学路上花费15分钟。

  【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。

  (三)知识应用

  1.判断。

  (1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。

  ( )

  (2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。

  ( )

  (3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。

  ( )

  【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。

  2.选择。

  小明家平均每月用水( )吨。

  A.(16+24+36+27)÷365

  B.(16+24+36+27)÷12

  C.(16+24+36+27)÷4

  【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。

  (四)全课小结

  今天你有什么收获?

  再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?

《平均数》教学设计5

  教学设计教学目标:

  1、使学生理解平均数的含义,初步学会简单的求平均数的方法。

  2、理解平均数在统计学上的意义,感受数学与生活的联系。

  3、发展学生解决问题的能力。

  重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

  教学过程:

  一、理解平均数

  1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?

  2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。

  3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。

  4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。

  二、探究体验

  1、出示情景图:说说老师和同学们在干什么?

  2、出示统计图:引导学生收集信息。

  3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

  4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?

  5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的`数。

  6、小结求平均数的方法。

  三、实践应用

  1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。

  2、根据统计表算一算,三年段平均每班踢几下?

  班级 三(1) 三(2) 三(3) 三(4)

  踢的次数 632 654 668 646

  3、生独立完成练习十一第2题。

  四、全课总结

  1、通过今天的学习,你学到了什么新的知识?

  2、师总结。

  平均数 教学设计

  共4课时 总第23课时

  教学目标:

  1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

  2、使学生认识统计与生活的联系,发展学生的实践能力。

  3、巩固求平均数的计算方法。

  教学过程:

  一、情景导入

  1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?

  2、学生动手解决,并交流解决的方法。

  3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

  (1)组织交流解决的方法。

  (2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。

  二、探究体验

  1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。

  2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

  3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

  4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?

  5、组织交流计算的方法与结果。

  6、组织讨论:从刚才的这件事,你有什么发现?

  7、小结:平均数能较好地反映一组数据的总体情况。

  三、实践应用

  1、说说生活中还有哪些事要通过求平均数来解决问题。

  2、生独立完成练习十一第4、5题。

  四、全课总结

  1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

  2、师总结。

《平均数》教学设计6

  教学内容:实验教材三年级下册第三单元。

  课题:求平均数。

  教学目标:

  1.知道平均数的含义和求法。

  2.加强学生对平均数在统计学上意义的理解。

  3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

  教师重点和难点:理解平均数的含义,掌握求平均数的方法:“移多补少”的实际意义和应用。

  教具/学具准备:多媒体课件、圆片、计算器。

  教学过程

  一、创设情境、激趣导入

  1.谈话引入:(出示幻灯教师家的书橱)现在我的书架上上层有12本书,下层有10本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。

  2.感知

  (1)学生思考,想象移的过程。

  (2)教师操作并问:现在每层都有11本书了,这个11是它们的什么数?

  (3)师:像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到的相同数,就是这几个数的平均数。

  今天,我们就来认识一下“平均数”这个新朋友,好吗?

  (板书:平均数)

  二、探究新知

  1.理解含义,探求方法。

  提出问题:小组合作按要求叠圆片,第一排叠2个,第二排叠7个;第三排叠3个。

  师:看着面前的圆片,你能提出什么问题,

  生:我想使每排的圆片同样多?

  师:是个好问题!下面我们就以小组为单位来研究怎样才能使三排圆片同样多。先动手活动,再互相说说法。

  小组活动讨论。

  汇报交流。

  生1:我们先从7个里拿出1个给3个,再从7个里拿出2个给2个,这样每排的圆片就同样多了。

  生2:我们是以最少的一排2为标准。从7个里拿出5个,再从3个里拿出5个,然后把这6个平均放到三排,每排放2个,和原来2个合起来,每排都是4个,也同样多。

  师:不管怎样移,我们都是把个数多的移给个数少的

  请你想一想:在刚才移动过程中,有什么相同的规律?

  根据学生回答板书:不相等 相等

  小结:像这样,在总数不变的`前提下,几个不相同的数通过移多补少变得同样多,同样多的那个数就是原来这几个数的平均数。

  2.初步应用,内化拓展。

  师:刚才同学们用各种方法示出了平均数,请你选择最喜欢的方法,并说说你是怎样想的?(出示:7,3,6,4的平均数是多少?)

  生1:我是这样想的(7+3+6+4)+4=5,所以7,3,6,4,的平均数是5,我在加的时候还用了凑十法。

  生2:我是从7拿出2给3;6拿出1给4,通过移多补少得出7,3,6,4的平均数是5。

  出示幻灯:身高情况

  先估计一下平均身高大约是多少?(148,147,149,……)算一算,比较一下估计准不准,谁先算好自己上来写到黑板上。

  生1:我是这样想的,152拿出3个给146,151拿出2个给147,那么这组数据的平均数就是149。

  生2:我是这样想的,这列数从146到153,里面少148与150,148与150的中间数是149,所以这些平均数是149。

  三、拓展练习

  1.应用一。

  小组活动:拿出准备好的调查表,先用计算器求出平均数,再互相交流看法与观点。(调查表有小组成员的体重,身高,家里近几个月的电话费、电费,上周的气温情况等)

  交流反馈。

  师:看了两(三)组平均体重数据有何启发?[根据“平均数”可以对两(三)组体重进行比较]

  师:教师还收集了一组数据,发现我校第一季度用电情况如下表:

  1月

  2月

  3月

  800度

  1000度

  900度

  (1)说说从表中你有什么发现?

  (2)算一下我校第一季度平每月用电量。

  (3)预测4月份的用电量。

  (4)小组讨论,学生间交流。

  (5)指名汇报:你是根据什么来估计的?

  2.应用二。

  请用计算器帮这位小选手算算最后得分。

  生1:最后得分(84+70+88+94+82+86)÷6=84(分)。(大部分学生表示赞同)

  生2:我不同意,我认为应该去掉一个最高分、一个最低分。最后得分(84+88+82+86)÷4=85(分),这样才公平、合理。

  师:这种求平均数的方法,你有没有在哪里见过?(奥运会、电视比赛等)为了使比赛更公平,通常在比赛中采用这种方法求平均数。

  3.应用三。

  师:星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?

  □会 □不会 □可能会 □可能不会

  (1)把自己的想法与同桌交流。

  (2)指名说说(3个)

  (3)学生评价。

  师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,也可能正好是126厘米,我们在对待实际问题时就应该根据实际情况分别对待。

  四、课堂总结

  师:这节课你有哪些收获?还有问题吗?

  五、课外延伸

  推荐作业:1、现在你对教师上课开始的问题“我们班的平均身高是多少?”

  能解决吗?这一问题就留给大家课后去解决。

《平均数》教学设计7

  一、学生起点分析

  学生的知识技能基础:学生在上节课学习了算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,能解决相关平均数的实际问题。

  学生活动经验基础:学生在算术平均数和加权平均数的学习活动中,解决了一些相关的实际问题,再次感受到了数据收集和处理的必要性和作用,又获得了一些从事统计活动的数学活动经验,具备了一定的自主探索与合作交流的水平。

  二、学习任务分析

  本节课的学习任务是:进一步了解权的差异对平均数的影响,理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题,发展数学应用水平,达成相关的情感态度目标。为此,本节课的教学目标是:

  1.知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。

  2.过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维水平;通过相关平均数的问题的解决,发展学生的数学应用水平。

  3.情感与态度:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

  三、教学过程设计:

  本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:使用提升;第四环节:课堂小结;第五环节:布置作业。

  第一环节:情境引入

  内容:请同学们回忆:什么是算术平均数?什么是加权平均数?

  请同学们各举一个相关算术平均数和加权平均数的实例,并解决之。

  在学生的复习交流中引入课题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。

  目的:以旧引新,自然衔接,起到温故知新、调动学生学习积极性的作用。

  注意事项:教师对学生所举的算术平均数和加权平均数的实例只要合理,就要给予积极地评价,让他们体会数学与社会生活的密切联系,了解数学的价值,但时间不能占用过多,达到调动学生的积极性,引入新课既可。

  第二环节:合作探究

  内容:1.做一做

  我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的.各项卫生成绩分别如下:

  (1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?

  (2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?

  对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,实行评价。准确的答案是:

  一班的卫生成绩为:95×15%+90×10%+90×35%+85×40% = 88.75

  二班的卫生成绩为:90×15%+95×10%+85×35%+90×40% = 88.75

  三班的卫生成绩为:85×15%+90×10%+95×35%+90×40% = 91

  所以,三班的成绩最高。

  对于第(2)问,让学生先在小组内各抒己见,然后在全班交流体会:

  以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。

  目的:通过学生计算小明的方案,自己再设计方案和交流,确实让他们体会到权的差异对结果的影响,理解到权的重要性。

  内容:2.议一议

  小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?

  以下是小明和小亮的两种解法,谁做得对?说说你的理由。

  小明:word/media/image1_1.png(9%+30%+6%)= 15%

  小亮:word/media/image2_1.png

  学生分组讨论,全班交流,说明理由:

  因为小颖家去年的饮食、教育和其他三项支出金额不等,所以,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小亮的解法是对的。

  目的:使学生理解日常生活中的很多“平均”现象并非算术平均。因为多数情况下,各项的重要性不一定相同(即权数不同),所以应将其视为加权平均。

  注意事项:本环节一个“做一做”,一个“议一议”,要让学生积极地动脑想、动手做、大胆讲;主动参与,合作交流,乐于探索;加深对加权平均数的理解,特别是权的差异对结果的影响,理解到日常生活中的很多“平均”现象是“加权平均”。

  第三环节:使用提升

  内容:1.小明骑自行车的速度是15千米/时,步行的速度是5千米/时。

  (1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?

  (2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?

  2.某校招聘学生会干部一名,对A,B,C三名候选人实行了四项素质测试,他们的各项测试成绩如下表所示:

  根据实际需要,学校将语言、综合知识、创新、处理问题水平按20%、30%、30%、20%的比例计算成绩,此时谁将被录用?

  目的:第1题是课本上的题,题中(1)(2)两问是让学生通过比较,理解算术平均数是加权平均数的一种特殊情况,即各项的权相等。第2题是补充题,题中四个数字85,90,95,95都相同,但因为权数不同,故最后的结果不同。让学生再次体会到“权”的重要性,并使用加权平均数解决实际问题,发展数学应用水平。

  注意事项:对学生的解题过程和结果做适当的评价,特别要注重中下等生,对他们点点滴滴的进步都要给予鼓励。

  第四环节:课堂小结

  内容:说说算术平均数与加权平均数有哪些联系与区别?

  教师引导学生比较、议论、交流、总结出结论:

  算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数。

  因为权的不同,导致结果不同,故权的差异对结果有影响。

  第五环节:布置作业

  课本习题8.2。

  四、教学反思:

  数学学习不能单纯依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学重要方式。本节课的几个教学环节就是想通过想一想、议一议、做一做等数学活动来引导学生探索和交流,体会权的差异其平均数的影响,理解算术平均数和加权平均数的联系与区别,在改变学生的学习方式的同时让学生增强数学的应用意识,了解数学的价值,提升思维水平,增进学好数学的信心。

《平均数》教学设计8

  “平均数的应用”,是上教版九年义务教育数学课本五年级(上)P38—39的内容,为小学数学“统计与概率”课程范畴。平均数是统计学中最常用的一个统计量。在具体应用中,平均数除了可以用来比较同类数据的一般水平或整体情况。但当无法得到“大数据”的平均数,而又需要这个“大数据”的整体情况时,我们一般还可以用部分(样本)平均数来推出整体的平均数水平,或者用来归纳、、分析、预测全体样本的情况或趋向。

  “平均数的应用”正是通过简单抽样,旨在引导学生运用部分平均数来推测总体平均数水平,解决生活中的简单实际问题。因此,本节课不仅是本单元的重点和难点,甚至在整个统计学中都占有重要的地位,对培养学生统计素养有着重要作用。

  本节课是在学生学习了平均数的概念、计算以及简单应用的基础上教学的。之前,学生还学习过条形统计图、折线统计图,有了一定的分析、描述统计数据的能力。本节课正是让学生在解决简单实际问题中,进一步积累分析和处理数据的方法,发展统计观念,培养统计素养。

  基于以上认识、分析,我制定了以下教学目标:

  ⑴理解部分平均数,并可用它推测总体平均水平;

  ⑵会用部分平均数推测总体平均水平的方法解决相关简单的实际问题;

  ⑶经历用部分平均数推测总体平均水平解决问题的过程,培养统计素养。其中,教学重点是会用部分平均数推测总体平均水平并解决问题;教学难点为理解部分平均数,并推测它的总体平均水平。

  在设计本教学方案时,本课试图体现以下特点:

  ⒈为学而教的学习内容组织。

  数据分析是统计的核心。因此,在教材例题的基础上,我增加了小胖的84个步幅(即84个数据),这就为学生分析、解读数据提供了素材。同时,这些数据还承载着“运用部分平均数推测总体平均水平”的“使命”。

  除此之外,我还试图将本课例题中“算教学楼的大约长度”分成三个层次推进,即步幅乘步数、步数乘平均步幅以及平均步数乘平均步幅,努力为学生逐步解决问题搭好台阶。

  ⒉注重学生的经历和体验。

  数学课程标准中明确指出:除了要掌握数学基本知识、训练数学基本技能,更重要的是要让学生领悟数学基本思想,积累数学基本的活动经验。本节课,可以看作为统计单元中“解决问题”的教学。所以,解决问题的策略就显得尤为重要。

  用“步幅乘以步数”算教学楼的长度是学生的生活经验。当学生看到84个步幅的不同长度时,经验的合理性备受质疑,自然过渡到“平均步幅乘以步数”。但平均步幅计算的繁琐却成了学生亟待解决的问题。“你有什么好的'建议?你觉得选择几个数据合适?”我让学生带着问题去尝试、去体验。然后,再通过计算,将部分步幅平均数下的教学楼的长度与总体步幅平均数下的教学楼长度进行比较,继而得出“运用部分平均数可以推测总体平均水平”的策略,可以说是水到渠成。接下来“平均步数”的计算,便是运用策略解决问题的最好证明,等等。

  整个教学过程,我以“计算教学楼的大约长度”为情境,以一个个问题为驱动,试图给学生思考、体验、感受空间,鼓励学生用自己的方式去分析数据,培养数据分析观念。同时,早期经验的多样化和适当优化也可以为以后学习正规的统计图表和统计量奠定比较牢固的基础。在这一系列活动、过程中,教学重难点得以突破,学生的统计观念和统计素养得到提升,为进一步领悟统计思想打下基础。

  ⒊重视意义的建构和运用。

  “应用意识”是课程标准十个核心概念之一。统计中的平均数是生活中经常用到的知识,所以学生能将本节课中学到的知识运用到生活中去,解决生活中实际问题,也是本节课所要达到的目标之一。在练习活动时,我尝试让学生去分析生活中的数据,不仅要利用所学的知识解决问题,还要结合生活实际进行比较、思考,特别是当部分平均数为一组极端数据的平均数时,更是给学生的思维带来挑战,从而对运用部分平均数来推测总体水平有更深的认识。

《平均数》教学设计9

  教学内容:《数学》三年级下册第58、59页

  教学目标:

  1.通过丰富的实例,经历进一步了解“平均数”意义的过程。

  2.能够根据具体情境,利用“平均数”解决生活中的实际问题。

  3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。

  教学准备:CAI课件。

  教学过程:

  教学环节

  设计意图

  教学预设

  一、情境创设:

  同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?

  去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片

  二、探究与体验;

  1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)

  95分

  95分

  96分

  85分

  98分

  93分

  你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。

  2.全班交流:

  刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。

  指名回答。

  生评价谁算得对。

  4.师小结过渡:

  是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?

  5.议一议:

  师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:

  第一次

  第二次

  第三次

  第四次

  第五次

  167厘米

  167厘米

  167厘米

  167厘米

  167厘米

  那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。

  全班交流。

  6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的最后成绩,而不是用他几次试跳的平均成绩。

  7.通过以上的学习你了解到了哪些知识?

  三、实践与应用;

  师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?

  1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。

  第(3)个问题请同学们同桌交流自己的看法,然后集体交流。

  2.出示第2小题,生独立完成,然后集体订正.

  3.出示第三小题,生独立完成第一步,然后集体订正。

  第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。

  四、拓展与延伸:

  出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?

  请同学认真思考,然后和同桌说说你的想法。

  从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。

  让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。

  培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。

  让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,

  对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。

  在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的`学生个别辅导。

  对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。

  让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。

  在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“×××,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:

  为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。

  学生可能有以下几种答案

  1.(96+95+95+96+85

  +98+93)÷7=94(分)

  想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。

  (2)(96+95+95+96+93)÷5=95(分)

  想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。

  还有可能出现计算错误的现象,让学生找出错误原因。

  学生可能出现的回答有;

  1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。

  2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。

  第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。

  答案应该是下周应准备和本周售出总数同样多的饮料最合适。

  什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。

  “平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。

《平均数》教学设计10

  一、教学目标:

  1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、过程与方法:使学生初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。用数据分析、比较、等多种方式来解决问题,提高学生解决问题的能力,拓宽学生解决问题的途径。

  3、情感与态度:在愉悦轻松的课堂里,掌握富有挑战的知识,丰富生活经验的积累。在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。

  二、重点难点

  教学重点:通过直观的方式使学生理解什么是平均数,再利用平均分的意义,使学生理解。同时感受平均数在统计学上的意义和作用。

  教学难点:总结出求平均数的`一般方法,实现从直观到抽象的过渡。

  教学准备:幻灯片、磁铁、统计图等

  三、教学过程

  (1)、创设情境、提取数据

  话题:同学们投篮过吗?老师也会投篮,一分钟我一般可以投4个。可是在一分钟投篮测试中我第一次投居然只投了一个。只测这一次能测出我的我的一般水平吗?那怎么办?

  就像同学们所说,多测试几次就能把一般水平体现出来。

  (2)、解决问题,探求新知。

  你们瞧,快乐篮球队也正在进行一分钟投篮的测试。为了能较好地测出队员的一般水平,体育老师让他们每人测三次。

  师:第一个出场的是小林。你们说用几个来记录小林一分钟投篮的一般水平呢?

  接下来轮到小华出场了。看他第一次投了5个。是不是也可以用5个表示他的一般水平了?

  生:5+6+7=18(个)18÷3=6(个)

  师:像这样把三次投的个数合起来再平均分给这三次,使三次投篮每次投中的个数看起来同样多,这个同样多的数就叫做平均数。(板书:平均数)

  刚好第二次投中的个数和平均数一样多

  师:能代表小刚第一次、第三次投中的个数吗?

  生:是小刚1分钟投篮的一般水平(师板书:一般水平)

  师:也就是说,6是这三次投篮的平均数,在这里我们就可以说6是5、6、7的平均数。

  师:小强测三次,求得的平均数能较好地反映他的一般水平,如果想更好地测出他的一般水平可以再多测4次5次甚至更多次,次数越多平均数就越能表示他们投篮的一般水平。

  紧接着小强投篮的情况也出来了

  师:该用几个表示小强投篮的一般水平?

  师:除了列式计算(移多补少),你还有别的方法吗?

  动手移移看拿出小圆片,像老师这样用圆片表示投篮的个数,想一想怎么移能让三次看起来一样多,再移一移?

  师:我们还可以说,通过移多补少使每次个数看起来同样多的数,叫做平均数。

  【设计意图:知道平均数的含义,掌握求平均数的方法】

  (3)、自主探索,合作交流。

  师:其实除了我们刚刚求得的平均数,生活中也有许多平均数就藏在我们身边。

  图1,老师通过抽样调查统计出我校三年级同学平均身高是……。

  平均身高124厘米表示什么?

  图二,丽江春节期间平均每天3万游客。表示什么?

  图3,冬冬身高140厘米,到一个平均水深110厘米池塘游泳会不会有危险?

  师:除了这几个生活中的平均数以外,你还能举出其他生活中的平均数吗?

  【设计意图:了解求平均数的意义】

  (四)、归纳总结,知识拓展。

  学了这节课,你有什么收获?

《平均数》教学设计11

  以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上,整理了平均数的教学设计,希望可以帮助到老师。

  [教学目标]

  1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

  [教学重、难点] 理解平均数的意义,学会求简单数据的平均数。

  [教具准备]多媒体课件等

  [教学时间]1 课时

  [教学过程]

  一、创设情境,提出问题

  (屏幕出示)看,三(1)班的几个男女生正在进行套圈比赛呢,他们每人套了 15 个圈,老师用两幅统计图分别表示出了男生和女生套中的个数。

  从图中你得到了哪些信息?

  二、自主探究,理解新知

  1、初步引出平均数

  问:你们的眼睛真亮!那根据这些信息你知道男生套得准一些还是女生套得准一些吗? 猜猜看。

  师:到底事实情况怎样?我们必须想个方法来说服对方,请你们开动脑筋, 有了想法后小组内相互交流。

  小组讨论,教师行间巡视。

  问:有结果了吗?谁来说一说你的想法?你认为应该比什么?

  师:你觉得哪一种比法更加合理?说明你的理由。 指名回答。

  师: 在刚才的讨论中, 我们明白了参加比赛的人数不一样多, 算总数不好比, 也不公平,就不能用这种方法。只有求出男生平均每人套中的个数,女生平均每 人套中的个数,才能一比胜负。

  (出示:男生平均每人套中的个数、女生平均每人套中的个数)

  2.移多补少法。

  ⑴(出示:男生统计图)问:你能看图说说男生平均每人套中多少个圈呢?小组里讨论一下。

  (预设 :把张明的 9 个移 1 个给陈晓杰,1+6=7,张明还有 8 个,再移 1 个 给李小钢,1+6=7,最后大家都是 7 个。(生答,师演示) )

  师:通过把多的移一些补给少的,使每个人都一样多。我们给这种方法起个 名字。

  ⑵你能用移多补少法看出女生平均每人套中的个数吗?(生答,师演示)

  3、先合再分

  ⑴提问:还有其它办法得到男生平均每人套中多少个吗?

  (生答,师演示) 会列式吗?板书:6+9+7+6=28 (个),28÷4=7(个)

  师:这种方法是先怎样,再怎样的?也给它取个名字“先合再分”。这里的 28 指的是什么?为什么要除以 4?不管用什么方法,最后都求出了男生平均每人套中 7个圈,反映了男生套中的平均水平。

  ⑵.求女生平均每人套中的个数。

  (出示:女生统计图)那么你会计算女生平均每人套中多少个圈吗?自己算一算。 (指名答,师板书)10+4+7+5+4=30(个) ,30÷5=6(个)。

  问:刚才男生中用总数除以 4,到了女生中,怎么就除以 5 了呢?(因为女 生是 5 个人) 通过算平均成绩, 现在你能比较出是男生套得准一些还是女生套得准一些了吧?(出示:答:男生套得准一些。)

  4、揭示课题。

  (出示男、女生统计图)同学们,刚才我们算出男生每人套中 7 个,这个 7 就是 6、9、7、6 这一组数据的平均数。(出示课题:平均数)这个 6 是哪几个数的平均数呢?

  5、理解平均数的范围。

  (1)比较。 男生实际上是不是每个人都套中 7 个?把这 7 个跟男生实际套中的个数比一比,哪些人套中的个数比 7 个多?哪些人套中的个数比 7 个少? 女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

  (2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

  (3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

  三、联系生活,灵活运用

  学习了平均数能为我们解决一些生活中的'问题吗?让我们继续研究。

  1、想想做做第1题。

  指名口答。 师小结:当数据较少而且数据之间相差不大时,适合用“移多补少”的方法 来算平均数。

  2、想想做做第2题。

  (课件出示) 快来解决小丽的问题吧。

  问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?想一想,你能不能估计出这三条丝带的平均长度在( )cm——( )cm 之间?当数据之间相差较大时,适合用先求和再平均分的方法。 学生尝试练习后评讲。 (实物投影)

  3、想想做做第3题。

  (课件出示) 看,篮球队员们的比赛多么激烈呀,你能解决这里的数学问题吗?

  师:我们对平均数又有了更深的了解,让我们用所学的知识一起来帮帮小明 吧!

  4、95页练习九第1题。

  怎么理解“平均水深110厘米”?想看看这个池塘水底下的真实情形吗?(出 示池塘水底)看来,认识了平均数,对于我们解决生活中的问题还真有不少帮 助呢。

  四、全课总结

  今天学习了平均数,静静地想一想,你有哪些收获?

  总结:今天,我们认识了平均数,知道平均数在生活中有很大的作用,希望大家在生活中学会利用平均数解决问题。

  五、拓展延伸

  1、师:小玲参加歌唱比赛这是5位评委给她打得分,你能算算她的平均得分是多少吗?

  学生自主计算,全班汇报。

  2、出示打分规则,再次计算

《平均数》教学设计12

  【教学内容】

  苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。

  【教学目标】

  1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

  2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的`方法,发展统计观念。

  3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

  【教具、学具准备】

  教具:课件、男女生套圈成绩图。

  学具:每四位学生一副男女生套圈成绩学具板。

  【教学过程】

  一、创设情境,激趣导入。

  谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!

  二、合作探索,解决问题。

  (一)两队人数相同,每人套中的个数不同。

  屏幕出示第一小组男、女生套圈成绩统计图。提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?

  学生回答后教师相机引导并小结。

  (二)两队人数不同,每队中每人套中的个数相同。

  屏幕出示第二小组男、女生套圈情况统计图。请学生一起回答是哪个队套得准一些。提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?

  结合媒体演示小结。

  (三)两队人数不同,每人套中的个数也不完全相同。

  1.提出问题,自主探究。

  出示第三小组的套圈成绩图(例题),引导比较,得出与第二小组套圈成绩图的异同。

  小小组四位同学利用学具板探索解决问题的方法,教师巡视。全班交流比的结果。

  指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。结合电脑演示教师讲解揭示平均数的含义。

  2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?

  指名列式并说说想法。

  3.理解平均数的意义。

  谈话引导学生观察、比较,加深对平均数意义的理解。

  4.小结。

  三、巩固深化,拓展应用

  1.辨一辨、说一说。

  2.移一移、估一估、算一算。

  (1)“想想做做”第1题。

  (2)“想想做做”第2题。

  (三条丝带的长度分别改成6厘米、44厘米、13厘米。)

  3.想一想,选一选。

《平均数》教学设计13

  教学目标:

  1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义。

  2.能运用平均数的知识解释简单生活现象,解决简单的实际问题,进一步积累分析和处理数据的方法,发展数感。

  3.在生活中增强与他人交流的意识与能力,在解决实际问题的过程中体验运用知识解决问题的乐趣,建立学好数学的信心,渗透品德教育。

  教学重点:理解平均数的意义和求平均数的方法。

  教学难点:理解平均数的意义。

  教学设计思路:

  根据学生耳鸣目染的生活现状创设不同层次的问题情景,学生在答题过程中逐步感受求平均数是解决一些实际问题的需要,并通过动手移、合与分的操作和思考交流体会平均数的意义,学会计算简单数据的平均数,从中渗透安全教育。

  教学过程

  一、创设情境,探究新知。

  同学们,现在全区开展“美丽广西.清洁乡村”的活动,作为市民,我们也要为此付出一份力量。你看,阳光学校三(2)班的同学为了响应党的号召,利用课余时间进行捡别人丢弃的矿泉水瓶比赛,他们班共有37人,每 3人为一组,可以分几组还剩几人?37÷3=12(组)……1(人)

  【设计意图】:用学生耳鸣目染的生活情景创设问题,即复习了平均分,又为下一个环节做好铺垫。

  (一)两队人数相同,比总个数。

  他们班每天从2个组中评出一组“美丽之星”,你觉得他们哪一组获星?

  出示:

  A 组

  B 组

  生:B组获星。

  师:你是怎么比的?

  生:当他们人数相等时,比较捡的总个数就能比出哪一组获星。

  (二)两组人数不同,比平均数,发现求平均数的方法。

  我们再来看看下面两组,看看哪一组获得这天的“美丽之星”出示:

  C组

  D组

  生:我的建议也是比较他们的总数?

  生:我有不同意见,人数不同比总数不公平。

  师:你很会观察统计表,而且说得很有道理,你们看人数不同比总数不公平。

  师:那怎么比才公平呢?

  生:减少1个人

  生:我认为不好,他们班每3人一组,剩下1个人,这个人不管放在哪个组,都会有一个组是四个人的。我们不能忽视别人的劳动成果。

  师:说得多好!你不但会分析问题而且很会做人!

  师:人数不同,我们怎么比才公平呢?以四人小组讨论,看看哪一组能想出好办法。

  【设计意图】:利用这班分组后多一人的人数冲突,产生人数不同如何比的问题,提升探究问题的兴趣。

  (学生小组活动,教师巡视,学生汇报)

  生:我们讨论的结果是“平均分”,也就是求C组平均每个人捡得多少个和D组平均每个人捡得多少个。

  师:那我们怎样平均分呢?

  学生诉说小结:也就是使每组中的每个人捡得同样多。

  学生用学具摆一摆也可以在纸上画一画,算一算来探究同样多的方法。

  (学生用学具探究方法)

  师:谁能把自己的想法和大家分享一下?(师结合学生的汇报,利用课件呈现移多补少的过程,)

  师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。【板书】

  师:谁来汇报 D组的呢。

  师:你是用什么方法找出D组同样多的?

  (生讲师再次呈现移多补少过程)

  探讨不同的方法引出列式计算。

  板书:C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

  =18÷3 =20÷4

  =6(个) =5(个)

  学生指着板书说说先合后分的方法。

  师:你为什么C组除以3, D组除以4呢?

  生:因为C组有3人而D组有4人。

  归纳得出:总数量÷总份数

  谈话:你给我们带来了求平均数的计算方法,同学们都给你掌声了呢,谢谢你!小结:无论是移多补少,还是先合后分,目的只有一个,就是把原来几个不同的数变得一样多。数学上我们把同样多的这个数叫做原来这几个数的平均数。(板书课题:平均数)

  完善板书:总数量÷总份数=平均数

  【设计意图】:由统计图显示出人数相同,收集个数不同;人数不相同,收集个数不相同两种情况,这样出现更为自然、合理、减缓了求平均数的坡度,强化了学生对平均数的意义和理解,体验到了实际问题的感受。问题的设计为学生的探究活动提供了导引,学生不仅学会了平均数的知识,更重要的是掌握了一种分析和解决问题的方法和策略,培养一种质疑反思的意识和习惯。

  二、深入理解平均数的定义(意义)

  师:C组的总数量是多少?总份数呢?平均数是?

  师指着板书学生汇报,明确6是6、9、3这三个数的平均数,5是2、6、8、4这四个数的平均数。

  仔细观察两条平均数的虚线,超于虚线的瓶子和不到虚线的瓶子,你发现了什么? (同桌交流)

  生:超出平均数的部分和不到平均数的部分相同。

  生:平均数比这里最大的数小一些,比最小的数大一些。

  生:平均数是在这组数据的最大数和最小数之间。

  师:还有发现吗?

  生:C组的数据还有和平均数恰好一样的。

  师:C组捡的平均数是6,这个6是谁捡得的个数?是洋洋捡得的个数吗?是花花捡的个数吗?还是晶晶捡的个数?

  生:都不是。这6是C组平均每人捡得的个数,是3个数的平均数。

  师:你分析得很有道理。

  师:我们比较这两组的平均数,哪个组获星了?

  生:A组获星了,

  师:同学们,课下我们也可以加入他们班的.活动,为了美丽广西实行“弯腰行动”吧

  【设计意图】:要提升学生发现问题、分析问题、解决问题的能力,教师的问题设计很重要,在此,我组织学生从对统计图红色虚线观察比较,直观地看出超出平均数的部分和不到平均数的部分相同,进而加深理解移多补少来求平均数,感悟平均数的特点。

  三、用一用,怎样理解生活中的平均数。

  师:我们在分析刚才这些活动结果的时候用到了平均数,在日常的学习和生活中,大家还在哪里见到过平均数呢?(学生自由交流)

  师:同学们都谈论得非常热烈,有平均成绩,平均速度,平均水深,平均年龄……

  师:老师也带来一些素材:(课件出示)

  小结:从这两个国家男女的平均身高可以看出哪个国家的人身高一些,因为平均数能代表一组数据的总体水平。下节课我们再进一步来研究这方面的知识。

  过渡:平均数在我们的生活中有着广泛的应用,接下来我们就分析下面几个有关生活中的平均数吧!

  【设计意图】:感受生活中平均数的意义,激发学生解决问题的兴趣。

  (一)平均成绩

  下表记录了三(2)班同学在大课间进行一分钟垫球比赛冠亚军成绩表,请你算一算谁是冠军

  (学生独立填写表格,有的很快就算出了结果,有的还在笔算)

  师:你为什么算得这么快?能把你的小窍门告诉大家吗?

  生:我利用移多补少的方法从小明第二次移1给第三次,就得平均数99。

  师: 你真是个机灵的孩子,我们用“移多补少”的方法看小亮的,是多少?(93)。

  用列式计算的同学说说做这道题的体会从而总结出:数量少的容易看出平均数的就用“移多补少”的方法。数量比较多不容易看出的,再用先合后分的方法。

  【设计意图】:此环节的练习帮助学生巩固本节课的知识,从中发现优化平均数的方法,提高思维敏捷性。

  (二)歌咏比赛平均分

  出示

  要求算出1号选手的实得分

  师:打分最高的是多少分?最低分呢?不计算,你能估计一下1号选手平均得分在什么范围之内吗?猜猜1号选手平均得分是多少?

  学生的答案在82到97之间

  猜完列式验证自己的答案。

  (出示评分规则:去掉一个最高分和一个最低分来确定最后实得分。学生再算最后得分)

  小结:平均数在具体的应用过程中还要根据具体的游戏规则,联系实际去思考来发挥它的作用的。我们学到众数,中位数时会进一步比较。

  【设计意图】:此环节的练习让学生体会到平均数在实际应用过程中受到最大数和最小数的影响,为了公平起见,还要根据具体的游戏规则来算。从中也为日后学众数和中位数埋下伏笔。

  (三)平均水深

  老师这里有一道有趣的问题

  一条河平均水深是100厘米,小明身高是140厘米,他想:在这条河里学游泳不会有危险。你同意他的观点吗?

  生:小河平均水深是100厘米,如果深的地方超过140厘米,小明到河里游泳就会有危险。

  (课件出示河的截面图)如果要在河边立一块警示牌,你会怎么写才能让人一眼看出危险性呢?(出示:最深处约250厘米)

  出示最近溺水事故案例,希望同学们不要到河里去游泳,注意人生安全!

  【设计意图】:平均水深这道题,用学生日常生活常识,知道一般河流水下深浅不一,利用出示截面图和建立警示牌起到警示作用,进而渗透安全教育。用典型的问题将学生的思维引向深处,在解决问题的过程中收获一种思维方式。

  四、总结评价,感受成功。

  提问:通过这节课的学习,你有哪些收获呢?

  从学生回答小结出:平均数介于最大数和最小数之间,还学会了灵活应用两种求平均数的方法。

  布置作业:利用今天所学的知识来解决课本P44练习十一的第1、第2题。

  课堂赠语:只要同学们善于观察生活,就会发现生活中处处都有数学存在。

  五、板书设计

  平均数

  ①移多补少

  ②先合后分 总数量÷总份数=平均数

  C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4

  =18÷3 =20÷4

  =6(个) =5(个)

《平均数》教学设计14

  教学目标:

  1、知道平均数的含义和求法。

  2、加深对“平均数”和“平均分”意义的理解。

  3、运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

  4、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  教学重难点:

  重点:理解平均数的含义,掌握求平均数的方法:“移多补少”、“先合并再平分”的实际意义和应用。

  难点:理解平均数的含义,让学生知道平均数是一个不“真实”的数。

  教学过程:

  一、创设情境,初步感知

  1、问题引入:现在黑板上摆两排圆形磁铁第一排有9个,第二排有5个,我想请同学们帮忙,重新整理一下,使每排磁铁同样多。

  2、感知。

  (1)学生思考,想移的过程

  (2)教师操作引导:现在每排都有7个,7是这组数的什么数?

  (3)像这样把几个不同的数,通过“移多补少”、“先求和再平分”的方法,得到相同的数,就是这几个数的平均数。

  师:今天,我们就来认识一下“平均数”这个新朋友。(板书课题)[设计意图:从生活导入,自然引出平均数的概念,让学生初步感知平均数是表示一组数据的一般情况,为后面深化对平均数意义的理解做好了铺垫。]

  二、合作探究,深化理解

  1.操作:

  师:在黑板上用圆形磁铁摆:第一排放8个,第二排放4个,第三排放3个,注意摆的时候,要一一对应地摆齐。

  2.学生合作探究:

  师:平均每排有多少个圆形磁铁?你是怎样想的?3.交流汇报a.移多补少:只要从8个中拿1个放到第二行的4个中,拿2个放到第三行的3个中,它们就一样多了,所以这三行圆形磁铁的平均数是5。

  b.先算总数再平均分:把三行圆形磁铁合在一起,先求出一共几个,然后再除以3就可得到这三行的圆形磁铁的平均数。

  [设计意图:“活动”是儿童感知世界,认识世界的主要方式,也是儿童社会交往的最初方式。在这个环节中,为学生提供了大量的活动材料──圆形磁铁,让学生通过摆来体验和感悟新知识。学生的手、脑、眼、口等多种器官直接参与了学习活动,不仅解决了数学知识高度抽

  象性与儿童思维发展具体形象性的矛盾,而且使全体学生都积极主动参与,培养了合作能力和探究精神,使学生在生活化的情景中感受数学,体验数学,经历了知识的形成过程,开发了学生的思维。] 4、教学例1 (1)、出示情景图,收集数学信息

  师:为了保护环境,我们学校三年级6班的第一小组同学利用课余时间收集矿泉水瓶,做环保小卫士,请同学们仔细观察统计图。从图中你知道哪些数学信息?

  生:小明收集15个,小亮收集11个生:小红比小兰多收集2个……

  师:他们平均每人收集多少个?你是怎样理解“平均每人收集多少个”的?

  生:就是让我们求出平均数。

  师:你同意他的说法吗?你是怎样理解的?(2)利用情境图,处理数学信息A:移多补少

  师:怎样才能让他们收集的瓶子变得一样多呢?利用这个统计图,你们有什么办法解决平均每人收集了多少个矿泉水瓶这个问题?

  生:小明给小亮2个,小红给小兰一个,他们收集的个数就一样多了。都是13个

  师:这13个是不是他们每个人实际收集的瓶子数量?(不是)那么13应该叫做这组数的什么数?(平均数)

  生:13就是14、12、11、15这组数的平均数B:先求和再平均分师:如果没有这个统计图,这四位同学只是告诉你自己收集了几个瓶子,你还其它方法求出他们平均每个人收集多少个瓶子吗?生:先求和再除以4.就可以求出他们平均每人收集多少个瓶子。

  生:14+12+11+15=52(个) 52÷4=13(个)

  师:13是这组数的什么数?(平均数)

  生:13就是14、12、11、15这组数的平均数C:理解平均数是一个不“真实”的数。

  师:平均每人收集13个瓶子,表示每个同学都收集13个瓶子吗?你能举举例子说说吗?

  生:不是生:他们平均每人收集13个,但是小明实际收集了15个,小兰实际收集了12个。

  师:这个平均数和平均分不一样,平均数比较好的表现了这一小组的整体水平,并不表示每一个人真的收集了13个瓶子

  师:现在同学们来观察平均数13和原来这一组数,你发现了什么?

  生1:小红和小明收集的瓶子个数比平均数多的,小兰和小亮收集的瓶子个数比平均数少。

  生2:平均数在最大的数和最小的数之间。

  生3:“平均数是一个虚的数,比最小的数大一些,比最大的数小一些,在它们中间。”

  生4:“平均数不是某一个人具体的收集瓶子数量,它代表的是几个人收集瓶子的平均水平。” D:归纳“平均数”的含义

  师:同学们,你们真是太棒了!平均数正如你们所说,平均数的大小在最大的数和最小的数之间。它不是一个“真实”的`数,而是表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些数可能比平均数大,有些数可能比平均数小。

  E:小结求平均数的方法,知道平均数在生活中的运用。

  师:通过刚才的学习你能说一说求平均数有几种方法?根据学生回答板书:

  1、移多补少2、先求和再平均分师:虽然这两种方法都可以求出平均数,但是我们做题时要根据实际情况来选择合适的方法。数量少,相差不大,用移多补少的方法简单;数量多,相差大,用先求和再平均分。

  师:用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常要用到。如平均产量、平均速度、平均成绩、平均身高等等。

  『设计意图:从生活中搜集,整理数据,并求出平均数,使学生体会

  “平均数”反映的某段时间内具有代表的数据,在实际生活、工作中人们可以运用它对未来的发展趋势进行预测。计算的引入,使学生乐意并有更多精力投入到现实的、探索性的数学活动中去。』

  三、巩固应用

  1、算一算在一次数学测验中,小芳得了98分,小强得了96分,小明和小兰都得91分。你能算出这四位同学的平均成绩吗?

  2、辨一辨

  (1)白沙县第一小学的老师平均年龄是38岁,那么王老师一定是38岁。

  (2)白沙县第一小学全体同学向希望工程捐款,平均每人捐款3元。陈良同学不可能捐4元。

  3、想一想:

  星期天,小丽高高兴兴去学游泳。她碰到一个难题,原来游泳池的水平均深是126厘米,小丽身高134厘米,她在这个游泳池中学游泳会有危险吗?□会□不会□可能会□可能不会师:平均水深只是一个代表数,他的实际水深并不知道,可能比126厘米高,可能比126厘米深,我们在对待实际问题时就应该根据实际情况分别对待。

  [设计意图:深化了学生对“平均数”概念的理解,让学生体验了事件

  发生的可能性,提升了他们数学交流的能力。]

  四、全课总结.这节课,你有什么收获?[设计意图:引导知识穿线,自己和大家共同分享自己的收获,对自己的学习进行自我评价。]

  五、拓展延伸,深化提高

  1、刚才我们利用平均数解决了这么多的问题,其实,生活中很多问题都需要用平均数的知识来解决。想一想,你能举出生活中的实例吗?看谁是有心人,试着说一说。

  [设计意图:让学生用数学的眼光观察生活,让他们时刻体会原来数学在生活中无处不在。]授课时间:3月27日下午第一节课教学反思教学中,我培养学生多角度地思考问题,迁移类推能力,很注意学生在什么知识点上会产生思维障碍,就在这个地方解决,为了弄清例2怎样计算,让学生运用例1探索的方法,类推迁移,尝试做,增强学生的感性认识。然后类推到“做一做”练习之中。

  积极引探,发挥两主作用。课标指出:教学过程中,要充分发挥教师的主导作用和学生学习的积极性、主动性。教学时,教师通过积极的“引”,来激发学生主动地“探”,使教与学产生共振,和谐发展。教师出示例2时,问与例1相对有什么不同?启发学生积极思维;

  让学生主动探索出:求平均数先算什么,后算什么,同时注意培养学生的归纳思维能力。

  精心设计练习。大纲指出:“练习是使学生掌握知识,形成技能,发展智力的重要手段。练习主要在课内进行,练习要有层次,有针对性,讲究方式,使全班学生都得到较多的练习机会等。”我在课堂练习中,除基本训练打基础外,还出示了“尝试题”,诱发学生学习的积极性,边算边讨论,成功地解答尝试题后,教师还根据本节课的教学重、难点,设计了三个层次的专项练习:

  1.基本训练。2.变式练习。3.游戏练习。为学生设计多层次的尝试思维情景,让学生看有所思,练有所想。

  加强了信息交流,促进尝试成功。尝试成功的重要条件之一是学生讨论,是在学生获得自己的努力结果之后进行的生动活泼、独具一格的“语言和思维训练”,这种讨论使师生之间、学生之间在情感上得到交流和满足,有利于培养学生的数学语言表达能力和分析推理能力,发展学生思维,加深理解教材。我在课堂教学中设计了三次学生讨论,教师根据学生输送的信息,针对学习新知识的缺陷,作画龙点睛式的讲解,确保学生系统地掌握知识。与此同时,我也参与讨论,及时了解情况,并根据学生反馈的信息,及时进行针对性的讲解,以“教”促“学”,“学”中有“教”,密切了教与学的关系,保证了尝试成功。

《平均数》教学设计15

  教学目标

  知识与技能:

  1、能对获得的数据进行整理,并用条形统计图表示出来。

  2、认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  过程与方法:

  1、经历收集、整理、描述和分析数据的过程。

  2、经历读统计图、交流信息、提问题、解决问题的过程。

  情感态度价值观:

  从统计图中获取信息、用统计图表示数据的过程中,体验用统计图表达表达交流数据的特点,认识统计图的价值。

  教学重点

  认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  教学难点

  能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  教学方法

  尝试教学法

  课型

  新授课

  教学准备

  多媒体

  教学时数

  1

  板书设计

  教学过程:

  一、炫我两分钟

  二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期的对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。

  为了能够提高飞机的'防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是请来了统计学家,统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家信心十足的说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。

  从这个故事中你知道的统计有什么作用吗?

  【设计意图:炫我两分钟给学生一个自我展示的平台,绽放其生命色彩。能够提高学习数学的情趣,增强学好数学的信心。】

  二、尝试小研究

  尝试小研究:

  研究一:

  1.从上面的统计图中,你得到了哪些信息?

  2.这个统计图一个格表示几个人?你是怎么知道的?

  3.自己提出问题并解答。

  研究二:

  1.完成课本91页,试一试:根据统计表,完成统计图。

  2.交流展示学生完成的统计图。

  三、小组合作探究

  尝试研究一

  出示小组合作交流建议:

  1、组长组织本组成员有序进行交流,确定好组员的发言顺序。

  2、认真倾听其他组员的发言,对他的发言内容进行评价,组内达成统一意见。

  3、组内分工,为班级展示提升做准备。

  【设计意图:给每一个孩子创造一个发言的机会,让学生在思考、交流的过程中对知识进行一个思维的碰撞。】

  四、班内展示交流,建构新知

  1、全班交流,师生评价。

  2、试一试,学生读统计表,谈一谈自己的感受。观察不完整的统计图,找出这幅统计图的特征。(用一个格表示4个人)

  3、学生试着补充完整统计图,师巡视指导,交流时,让学生说明不够整格时怎样想的,是怎样处理的。(生表述自己的发现,关注学生能否发现每个格代表4人,如果学生没有发现教师予以提示。)

  小结:用条形统计图表示数据,当数据比较大时经常采用一格表示多个单位的方法。

  4、鼓励学生根据统计图提问并解答。交流时,学生提出的问题只要合理,就给予肯定。

  【设计意图:通过交流,学生利用知识的迁移,认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。这是学生对知识一个内化、提升的过程。】

【《平均数》教学设计】相关文章:

平均数教学设计04-03

《平均数》教学设计04-18

平均数教学反思09-07

《平均数》教学反思09-15

四年级平均数教学反思05-26

教学设计模板-教学设计模板07-14

教学教学设计06-15

数学教学教学设计04-15

关雎教学设计02-11