组合图形的面积教学设计

时间:2023-10-09 08:29:45 教学设计 我要投稿

组合图形的面积教学设计

  作为一名辛苦耕耘的教育工作者,总归要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的组合图形的面积教学设计,仅供参考,希望能够帮助到大家。

组合图形的面积教学设计

组合图形的面积教学设计1

  新课标明确指出数学教学是数学活动的教学,是师生之间交往互动与共同发展的过程。在教学中要创设有助于学生自主学习的问题情景,激发学生学习的潜能,鼓励学生大胆创新与实践。

  【教学活动】

  一、创设问题情景(多媒体出示课件)

  老师:在一块长16m、宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半。假如你是设计师,你能设计方案吗?

  布置任务:同学们认真审题,理解题意后,分组进行讨论,设计具体方案,并说说你的想法。

  二、活动与探索

  各小组纷纷讨论设计(电脑机房,用“几何画板”画图),教师巡视,然后请各小组代表发言。

  小组1:我们组设计的方案如图(1)所示,连接矩形的对角线把相对的两个三角形作为花园,整个图形对称美观。且根据矩形的性质一定成立。

  老师:噢,同学们设计来想一想,小组1的设计符合要求吗?

  学生1:小组1的设计符合要求,只要过矩形对角线交点的直线与对边相交,都会把矩形面积平分。

  老师:很好,那你们组设计的方案是什么?是否有别的思路?

  小组2:我们组的设计方案如图(2)所示,花园的四周是小路,它们的宽度都相等,这样设计既美观又大方。通过列一元二次方程解得小路的宽是2 m或12 m。

  老师:是吗?大家想一想,小组2的设计符合要求吗?若符合,请说明是如何列方程求解而得的'?若不符合,请说明理由。

  学生2:小组2的设计符合要求。

  我们可设小路的宽度为x m,根据题意,列方程:(16-2x)(12-2x)= ×16×12,化简得x2-14x-24=0,然后利用配方法来求解这个方程,即,x2-14x=24,(x-7)2=25,x-7=±5,所以,x1=2,x2=12。因此小路的宽度为2 m或12 m。

  综上所述知,小组2的设计方案符合要求。

  学生3:不对,因为荒地的宽度只有12 m,所以小路的宽不能为12 m,因此小组2方案的结论不妥当,应改为:花园四周小路的宽度只能是2 m。

  (大家不约而同地鼓掌)

  老师:好,从大家的掌声中可知学生3说得在理。我们在解决实际问题时要注意解的合理性。因为一元二次方程有两个根,不一定都符合实际问题,解完之后要按题意来检验这两个根是否为实际问题的解。这一点,学生3所在的组做得很好,大家要学习他从多方面考虑问题。接下来我们来看其他组设计的方案。

  小组3:受第一组的启发,我们组又设计了一个方案,如图(3),以矩形的对角线的交点为圆心,以5、53 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地。

  小组4:我们也设计了一个方案,如图(4)。

  以矩形的四个顶点为圆心的扇形,和小组3的一样,扇形的半径为5、53 m,我们把扇形以外的荒地作为花园的场地。

  老师:同学们的方案设计得都很好,能触类旁通,太棒了!其他组怎么样?

  小组5:我们组设计的方案如图(5)。

  以一边的中点为顶点的等腰三角形作为花园的场地。因为图中阴影部分的面积为69 m2,刚好是矩形面积的一半,所以这个设计也符合要求。

  小组6:我们组设计的方案如图(6)。顺次连接矩形各边的中点,所得的平行四边形作为花园的场地。因为矩形四个顶点处的直角三角形都全等。每个直角三角形的面积是24 m2,所以四个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半。因此这个设计方案也符合要求。

  小组7:我们组设计的方案如图(7)。图中的阴影部分可作为建花园的场地。经计算,也符合要求。

  小组8:我们组的设计方案如图(8)。图中的阴影部分是作为建花园的场地。

  老师:噢,同学们能帮助求出图中的x吗?

  生:能,根据题意,可得方程:2× (16-x)(12-x)= ×16×12,即x2-28x+96=0,(x-14)2=100,x-14=±10。所以x1=24,x2=4。因为矩形的长为16 m,所以x1=24不符合题意。因此图中的x只能为4 m。

  老师:同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案。还有没有其他不同的方案?

  学生4:我的设计方案如图(9)所示。不知是否可行。

  老师:你能求出图中的x吗?

  解:根据题意,得(16-x)(12-x)= ×16×12,即x2-28x+96=0。解这个方程,得x1=24(舍去),x2=4。所以x=4。

  老师:真的不容易,同学们的方案真是五花八门。不仅应用所学的知识解决了实际问题,而且各个设计还注意了图形的对称性。大家肯定还有其他不同的想法,我们课后再交流。以后,若你家要建花园,可千万别错过这样的机会。

组合图形的面积教学设计2

  关键词:新课改;生本教育;人文教育

  中图分类号:G620 文献标识码:A 文章编号:1003-2851(20xx)-03-0206-01

  有教育家说:“让我看,我记不住;让我听,我会忘记;让我参与,我会明白。”――虽然简单,但很深刻,参与是一种民主,参与是一种人文的教育。

  课程改革进行到现在,作为一线的教师我们越来越深刻的认识到其核心环节在课堂教学。对于学生来说,课堂上“听懂了!”不过是最浅层次的了解罢了,并非“学会”了。而变换角度进行“自主、合作、探究”式的学习则是从学习方式上进行的学习的革命,也就是生本课堂,它倡导“一切为了学生,高度尊重学生,全面依靠学生。”它能使学生真正达到“学会”的目的。

  怎样创建以生为本“让我参与”的课堂,从教学设计而言,关键要充分体现学生的主体地位,凸显学生的学习过程,有效地使学生生动地参与到教学之中,成为探索和发现知识的主人。我校的生本导学案体现了学生全方位的参与过程。

 一、预习导学,专家说预习是学习能力培养的奠基工程

  通过课前的预习,学生在课堂上不在是一张白纸,他们对新知识有一定的了解,才能有全面的参与课堂的能力。实施生本导学一年来,我们深刻的认识到学生预习得好,就学得主动,课堂效率就高;反之,预习得不好,就会学得被动,课堂的效率就低。所以作为一线教师的我们一定要精心的设计预习。在《组合图形的面积》中我是这样设计的,首先让学生回忆以前学过的基本图形的面积,并用字母表示。如三角形的面积=ah÷2、平行四边形的面积=ah、梯形的面积=(a+b)×h÷2、长方形的面积=ab、正方形的面积=a×a、通过这些复习是学生巩固了旧知,也为今天的新知打下了坚实的基础。其次还让学生动手做了各种基本图形,然后用这些基本图形动手拼一拼看能拼成什么图形。通过这些操作学生能够基本了解组合图形的构成,为理解新知做了很好的铺垫,同时也为自己的课堂参与打下了基础。

 二、自主探究合作交流精彩展示

  自主、合作、探究学习是时代精神的反映,是以培养创新精神和实践能力为核心的素质教育的必然要求。它也是生本课堂中最主要的内容,最精华的所在。我们的`生本导学案也体现了这一点。教师只有在课堂上才能完成自己的使命,才能使生命绽放,才能发挥自己的创造能力。一堂课,短短的40分钟,老师不应该占有,只有充分的交给学生,才能使每一个学生得到锻炼,得到发展。在《组合图形的面积》中我是这样做的。

  1、让学生拿出自己准备的基本图形拼成各种图案,展示在黑板上,再让其他学生说一说他是由什么基本图形组成的。教师也出示几个图案也让学生说一说,并指一指。从而很顺利的引出基本图形的概念。

  2、创设情境,小华家新买了住房,计划在客厅铺地砖。教师引导让学生提出有价值的问题?然后再让学生估一估这个图形的面积。教师的这些设计发散了学生的思维,培养了学生问题意识,体现了数学的价值,数学为生活服务,数学来源于生活。同时通过估算可以起到验算的作用。

  3、小组合作,让学生把这个图形转化成已学过的图形,并计算。学生讨论出了多种方法,一是两个长方形;二是一个长方形和一个正方形;三是两个梯形;四是两个长方形加一个正方形;五是一个大长方形减去一个正方形。然后教师把四种方法整理到一块,让学生观察发现什么?很自然学生看到前四种是分割成两种基本图形,后一种是添补成了一种图形。这也就是计算组合图形面积的两种方法,既分割法和添补法。再让学生观察这些线有什么特征,都是虚线。回过头观察算式会发现什么?学生讨论出分割法是求和的方法,而添补法是求差的方法。教师通过有效的追问和小组的合作讨论使学生理解了新知,真正说明教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

  4、总结方法,再次让学生观察五种方法和五个算式,你能从中发现什么?引导学生发现分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。有些分割后的图形难于找到相关的条件,那么这样的分割方法就是失败的。这样就说明第四种方法比较繁琐,不易去。让学生提升和总结方法,不仅可以锻炼学生的语言组织,而且可以起到对新知识的理解和巩固作用。

三、测评反馈

  没有训练就没有积累,没有积累就没有能力。当堂检测教师还能清楚的掌握学生是否理解本课的教学内容。还能发现自己教学中存在的不足,那些内容自己没有指导清楚。所以它的设计应做到:吃透教材,目的性强;分析学情,针对性强;层层深入,循序渐进。在《组合图形的面积》中我是这样做的。

  1、出示课本练一练的第一题分一分,下面各个图形可以分成那些已学过的图形?

  2、出示课本练一练的第二题,粉刷这面墙,每平方米用0、15千克涂料,一共用多少千克涂料。

  3、出示课本练一练的第三题让小组讨论用什么方法解决。

组合图形的面积教学设计3

  一、学习“变异理论”,有所思

  “组合图形的面积计算”这一内容是学生在学习了长方形、正方形、平行四边形、三角形和梯形的概念及面积计算的基础上,结合实际情境和具体图形,探索组合图形面积的计算方法。这一内容既是对长方形、正方形、平行四边形、三角形与梯形面积计算的进一步拓展,又是数学知识应用于实际问题的体现。这一内容旨在发展学生的空间观念,提高学生分析问题和解决问题的能力。

  针对“组合图形的面积计算”这一内容,我的第一次教学设计了三个环节:一是回顾学习过的平面图形及面积计算方法,回忆推导平行四边形、三角形和梯形面积公式过程中运用的方法及得到的启示;二是通过创设“给小华家的客厅铺地板”这一情境,探索组合图形面积的计算方法,并把学生计算组合图形的方法分类、命名(分割法、割补法和添补法);三是巩固练习并小结。

  针对我的教学设计,“变异理论”课题组的老师展开研讨,最终指出两个关键问题:一是教学“组合图形的面积计算”这一内容时,教师首先要帮助学生建立“组合图形”的概念。二是探索“组合图形的面积计算”时,例题要丰富,以利于学生真正理解和掌握。

  “变异理论”鼓励教师在教学中采用多种多样的“非标准正例”,以使学生在多样化的问题情境中找到解决问题的共同规律。在教学中,学生在把分别求出的简单图形面积整合为组合图形的总面积时,最易犯两个错误:一是忘记把计算时增加的图形面积减去,二是忘记把分别计算的部分面积相加。上述两个错误说明学生对“组合图形”的概念理解不深,因而在计算“组合图形”时具有一定的盲目性。

  二、运用“变异理论”,有所为

  在备课过程中,由生活实例认识“组合图形”的思路给我启示,于是,联系“变异理论”,我增加了认识“组合图形”的教学环节。根据“变异理论”,列举“正例”和“非标准正例”对于学生认识概念的基本属性具有重要作用。因此,在引导学生认识“组合图形”的环节中,我特意将“正例”和“非标准正例”先后呈现,以使学生全面认识“组合图形”的.多样性。首先,我让学生观察房子、风筝和七巧板等“组合图形”,请学生说说这些“组合图形”是由哪些简单图形组成的,从而引出“组合图形”的概念。其次,我出示中国少年先锋队队旗,让学生通过动手操作感知“组合图形”。最后,我请学生观察周围的物品,让学生找找哪些物品的表面形状是“组合图形”,以加深学生在生活中对“组合图形”的认知。崭新的教学设计正是通过富于变化的“正例”和“非标准正例”,有序、完整地呈现了“组合图形”的基本属性(包含简单图形,是由几个简单图形组合在一起形成的)。一方面,学生通过观察房子、风筝和七巧板这些“组合图形”(“正例”)认识了“组合图形”的一般形式;另一方面,通过观察中国少年先锋队队旗(“非标准正例”),学生进一步认识到“组合图形”在基本属性保持不变的情况下,可展现多样化的形式。正是在例证的有序变化中,“组合图形”的基本属性凸显出来,有助学生准确地理解和掌握。

  在教学“组合图形的面积计算”这一内容时,为了避免学生以往经常犯的错误(即在算出基本图形的面积后忽略了相加或相减),我决定准备充分的“非标准正例”,以使学生理解“组合图形”的面积是基本图形面积相加或相减的结果。

  分析这三个例题:例1可运用分割法把基本图形的面积相加,最终求出菜地的面积;例2可运用添补法把基本图形的面积相减,最终求出草地的面积;例3除了可运用分割法、添补法,还可运用割补法使队旗形成一个基本图形,最终求出队旗的面积。这三个例题的选择,不仅考虑到计算方法的多样化,更将已学的长方形、正方形、平行四边形、三角形和梯形这些基本图形全覆盖。通过列举“非标准正例”,既强化“组合图形”的基本属性,又让学生充分掌握组合图形面积计算的多种方法。

  三、反思“变异理论”,有所悟

  我原来的教学设计是通过“给小华家的客厅铺地板”这一例题,即通过一个教学情境让学生探索“组合图形的面积计算”。修改后的教学设计中,我运用了三个不同的“非标准正例”,这样不仅有效地强化了学生对“组合图形”基本属性的认识,更将算法的多样化建立在多个“组合图形”的基础之上,进而将对“组合图形”的认识有效地迁移到组合图形面积的计算上。反过来,运用多个“非标准正例”计算“组合图形”的面积,进一步巩固了对“组合图形”的基本属性的认识。

【组合图形的面积教学设计】相关文章:

组合图形面积的教学设计08-29

《组合图形面积》教学设计05-12

五年级《组合图形的面积》教学设计06-26

《图形的旋转》教学设计09-01

图形的旋转的教学设计03-13

《图形的旋转》教学设计06-09

《圆面积》教学设计06-29

梯形的面积教学设计06-08

《圆的面积》教学设计03-06