正比例教学设计

时间:2024-11-20 23:23:13 教学设计 我要投稿

正比例教学设计

  作为一名优秀的教育工作者,往往需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。那要怎么写好教学设计呢?以下是小编为大家整理的正比例教学设计,仅供参考,大家一起来看看吧。

正比例教学设计

正比例教学设计1

  教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的'关系怎样?

  生:答对的题目与最后的成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

正比例教学设计2

  【教学内容】

  《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

  【教学目标】

  1、使学生理解正比例的意义,会正确判断成正比例的量。

  2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  【教学重点】

  正比例的意义。

  【教学难点】

  正确判断两个量是否成正比例的关系。

  【教学准备】

  多媒体课件

  【自学内容】

  见预习作业

  【教学预设】

  一、自学反馈

  1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

  2、通过自学,你能说说什么叫做成正比例的量?

  3、你是怎样理解成正比例的量的含义的?

  4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

  在教师的引导下,学生会举出一些简单的例子。

  二、关键点拨

  1、正比例的意义

  (1)出示表格。

  高度/㎝24681012

  体积/㎝350100150200250300

  底面积/㎝2

  问:你有什么发现?

  学生不难发现:杯子的底面积不变,是25平方厘米。

  板书:

  教师:体积与高度的比值一定。

  (2)说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

  (3)用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

  2、判断正比例关系:下面哪些是成正比例的两个量?

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的.数量和应付钱数成正比例。

  地砖的面积一定,教室地板面积和地砖块数成正比例。

  三、巩固练习

  1、学生独立完成例2后反馈交流。

  (1)从图中你发现了什么?

  这些点都在同一条直线上。

  (2)看图回答问题。

  ①如果杯中水的高度是7㎝,那么水的体积是多少?

  ②体积是225㎝3的水,杯里水面高度是多少?

  ③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

  (3)你还能提出什么问题?有什么体会?

  2、做一做。

  过程要求:

  (1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

  (2)表中的路程和时间成正比例吗?为什么?

  (3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

  (4)行驶120KM大约要用多少时间?

  (5)你还能提出什么问题?

  3、独立完成第44页练习七第1、2题。

  4、判断并说明理由。

  (1)圆的周长和直径成正比例。

  (2)圆的周长和半径成正比例。

  (3)圆的面积和半径成正比例。

  四、分享收获畅谈感想

  这节课,你有什么收获?听课随想

正比例教学设计3

  教学内容:

  本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

  教材分析:

  本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

  教学目标:

  1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

  2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

  4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

  教学重点:

  认识正、反比例的意义

  教学难点:

  根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。

  课时安排:

  正比例和反比例(4课时)

  第1课时

  教学内容

  成正比例的量

  教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

  课型

  新授

  本单元教时数:4本教时为第1教时备课日期月日

  教学目标

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

  3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。

  教学重点

  使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点

  根据正比例的意义正确判断两种相关联的量是不是成正比例。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例1

  1、谈话引出例1的表格

  2、这两种量的数据是怎样变化的?

  时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

  小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

  3、但是,你能发现什么呢?

  如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

  这个比值是什么呢?

  谁能用一句话来概括例1中的变化与不变

  4、介绍成正比例的量

  指名说说,表中有哪两种量

  引导学生观察,

  指名说一说。

  启发学生从“变化”中寻找“不变”。

  学生试着回答,教师帮助完成。

  学生完整的说说路程和时间成正比例的'量

  二、教学试一试

  1、出示教材试一试

  教师指导学生完成

  学试着完成,并交流回答四个问题。

  三、概括意义

  1、引导学生观察例1和试一试,它们有什么共同点。

  2、概括正比例的意义,揭示课题(板书)

  3、用字母怎样表示成正比例关系的两种量呢?

  y:x=k(一定)

  观察,说说自己的发现。

  学生完整的说一说例1和试一试成正比例关系。

  四、巩固练习

  1、完成练一练

  2、练习十三第1题

  重点让学生说出判断的理由

  3、做练习十三第2题

  4、做练习十三第3题

  引导学生根据计算的结果来判断。完成书上的问题

  重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

  独立判断,交流时说出判断的理由。

  学生先各自算一算,交流,说出思考过程。

  指名判断,交流时说出思考过程,其它同学进行补充或纠正。

  学生理解题意,然后在书上画一画,算一算,填在书上。

  五、全课总结

  学习了什么?你有什么收获?

  说一说

  板书

  正比例的意义

  两种相关联的量=k(一定)y和x就成正比例的量

  课后感受

  第2课时

  教学内容

  正比例的意义及其图像

  教材第63页例2,随后的练一练和练习十三的第4、5题

  课型

  新授

  本单元教时数:4本教时为第2教时备课日期月日

  教学目标

  1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学重点

  使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  教学难点

  使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例2

  1、先出示例1的表格

  谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

  出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

  引导学生观察这些点的排布规律,并用直线连起来。

  提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

  (2)图中所描的点在一条直线上吗?

  (3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

  学生描点。

  学生按要求操作完成。

  指名回答

  如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

  二、巩固练习

  1、练一练

  学生做好后展示学生画的图象,共同评议

  问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

  指名回答第(3)个问题

  追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

  2、练习十三第4题

  既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

  第二题要求估计,答案出入是允许的

  3、第5题

  先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

  学生独立完成

  指名回答第(2)个问题

  学生相互间说一说

  学生回答,要说明理由

  讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

  三、全课总结

  今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

  说说,议论议论。

  板书

  正比例的意义及其图像

  例2(图像)

  课后感受

正比例教学设计4

  教学要求:

  1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学过程:

  一、复习铺垫

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、引入新课

  我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

  二、教学新课

  1、教学例1。

  出示例1。让学生计算,在课本上填表。

  让学生观察表里两种量变化的数据,思考。

  (1)表里有哪两种数量,这两种数量是怎样变化的?

  (2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

  引导学生进行讨论。

  提问:这里比值50是什么数量?(谁能说出它的`数量关系式?)

  想一想,这个式子表示的是什么意思?

  2、教学例2

  出示例2和想一想

  要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

  学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

  比值1.6是什么数量,你能用数量关系式表示出来吗?

  谁来说说这个式子表示的意思?

  3、概括正比例的意义。

  像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

  4、具体认识

  (1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

  例2里的两种量是不是成正比例的量?为什么?

  (2)做练习八第1题。

  5、教学例3

  出示例3,让学生思考/

  提问:怎样判断是不是成正比例?

  请同学们看一看例3,书上怎样判断的,我们说得对不对。

  强调:关键是列出关系式,看是不是比值一定。

  三、巩固练习

  1、做练一练第1题。

  指名学生口答,说明理由。

  2、做练一练第2题。

  指名口答,并要求说明理由。

  3、做练习八第2题(小黑板)

  让学生把成正比例关系的先勾出来。

  指名口答,选择几题让学生说一说怎样想的?

  四、课堂小结

  这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

  五、家庭作业。

正比例教学设计5

  教学内容

  教科书第54页例3,练习十二5,6,7题。

  教学目标

  1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

  2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

  3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

  教学重、难点

  运用正比例知识解决简单的实际问题。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、复习引入

  1.判断下面各题中的两种量是不是成正比例?为什么?

  (1)飞机飞行的速度一定,飞行的时间和航程。

  (2)梯形的上底和下底不变,梯形的面积和高。

  (3)一个加数一定,和与另一个加数。

  (4)如果y=3x,y和x。

  2.揭示课题

  教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

  二、合作交流,探索新知

  1.用课件出示例3

  教师:这幅图告诉我们一个什么事情?需要解决什么问题?

  教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

  2.全班交流解答方法

  指导学生思考出:

  (1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

  (2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

  (3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

  3.尝试用正比例知识解答

  如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

  教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

  (1)题中有哪两种相关联的量?

  (2)题中什么量是不变的?一定的?

  (3)题中这两种相关联的量是什么关系?

  引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的'关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

  随学生的回答,教师可同步板书:

  教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

  引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

  教师:同学们会计算吗?把这个比例式计算出来。

  学生解答。

  教师:解答得对不对呢?你准备怎样验算?

  学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

  三、课堂活动

  1.出示教科书第49页的例1图和补充条件

  竹竿长(m)26…

  影子长(m)39…

  教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

  教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

  学生独立思考解答,讨论交流。

  2.小结方法

  教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

  (1)设所求问题为x。

  (2)判断题中的两个相关联的量是否成正比例关系。

  (3)列出比例式。

  (4)解比例,验算,写答语。

  四、练习应用

  完成练习十二的5,6,7题。

  五、课堂小结

  这节课我们学习了什么知识?你有什么收获?

正比例教学设计6

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:

  成正比例的量的特征及其断方法。

  难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。(课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的.变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

正比例教学设计7

  老师执教的《正比例的意义》这课,对我感受很深。

  一.结合生活实际

  周老师利用学校慈善一日捐的例子,引出了两个相关联的量,为新课后区别判断正比例关系提供了很好的材料。同时使学生感悟到生活中处处有数学,数学来源于生活。

  二.突出学生的`主体地位

  周老师教态自然,语言幽默,轻松自如,具有大师风范。周老师利用汽车和自行车行驶的路程和时间变化的表格让学生去比较,去发现。寻找相同点和不同点,使学生发现汽车行驶的路程和时间的变化是有规律的,自行车行驶的路程和时间的变化是没有规律的。从而周老师点出了正比例的意义,使学生感悟到汽车行驶路程和时间的比值一定。让学生主动探究学习,突出了学生的主体地位,老师真正起到了引导作用。

  三.练习设计具有阶梯性

  周老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。练习设计由易到难,符合了学生的认知规律。

  建议:我觉得在某些环节有点快。例如引出正比例定义后,应该完整出示正比例的定义让学生读一读;在做练习时,第一题填空题和最后一题深化题不要马上让学生齐读,应该让学生看一看,想一想,再指名说一说。在教学正比例时最好和斜线图结合起来,这样可以使学生加深对正比例的理解。

正比例教学设计8

  【教学内容】

  正比例

  【教学目标】

  使学生理解正比例的意义,会正确判断成正比例的量。

  【重点难点】

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。

  【教学准备】

  投影仪。

  【复习导入】

  1.复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书: =速度。

  ②已知总价和数量,怎样求单价?

  板书: =单价。

  ③已知工作总量和工作时间,怎样求工作效率?

  板书: =工作效率。

  2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  【新课讲授】

  1. 教学例1。

  教师用投影仪出示例1的图和表格。

  学生观察上表并讨论问题。

  (1)铅笔的总价和数量有关系吗?

  (2)铅笔的`总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。

  ②数量增加,总价也增加;数量降低,总价也减少。

  ③铅笔的总价和数量的比值总是一定的,即单价一定。

  教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2.教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

  教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  3.归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三:两个量的比值一定。

  4.用字母表示正比例的关系。

  教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

  5.教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  【课堂作业】

  完成教材第46页的“做一做”(1)~(3)。

  答案:

  (1) 。

  (2)比值表示每小时行驶多少km。

  (3)成正比例。理由:路程随着时间的变化而变化。

  ①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。

  【课堂小结】

  通过这节课的学习,你有什么收获?

  【课后作业】

  完成练习册中本课时的练习。

正比例教学设计9

  教学内容:

  教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

  教学目标:

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重难点:

  理解相关联的两个量及正比例的`意义,并能正确判断两种量是否成正比例

  学情分析

  1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。

  2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

  多媒体运用:ppt课件

  教学过程:

  一、教学例1

  1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

  2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

  3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

  学生可能会从不同的角度去寻找规律。

  教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

  如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

  4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

  根据学生的回答,教师板书关系式:路程时间=速度(一定)

  5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  (板书:路程和时间成正比例)

  二、教学“试一试”

  1、要求学生根据表中的已知条件先把表格填写完整。

  2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

  3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

  三、抽象表达正比例的意义

  1、引导学生观察上面的两个例子,说说它们有什么共同点。

  2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书关系式。

  四、巩固练习

  1、完成第63页的“练一练”。

  先让学生独立思考并作出判断,再要求说明判断理由。

  2、做练习十三第1~3题。

  第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

  第2题先让学生独立进行判断,再指名说判断的理由。

  第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

  填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

  五、全课小结

  这节课你学会了什么?通过这节课的学习,你还有哪些收获?

正比例教学设计10

  一、教学目标

  (一)知识与技能

  在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

  (二)过程与方法

  通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

  (三)情感态度和价值观

  主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

  【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

  二、教学重难点

  教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

  教学难点:利用正比例的关系列出含有未知数的等式。

  三、教学准备

  课件。

  四、教学过程

  (一)复习回顾

  1.说说正比例、反比例的相同点和不同点。

  2.判断下列每题中的两个量是不是成比例,成什么比例?

  (1)已知A÷B=C。

  当A一定时,B和C()比例;

  当B一定时,A和C()比例;

  当C一定时,A和B()比例。

  (2)购买课本的单价一定时,总价和数量的关系。

  (3)总路程一定时,速度和时间的关系。

  【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

  (二)探究新知,培养能力

  1.提出问题。

  教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

  课件出示教材第61页例5。

  思考:题中告诉了我们哪些信息?要解决什么问题?

  教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  2.解决问题。

  (1)学生尝试解答。

  (2)交流解答方法,并说说自己的想法。

  教师:谁愿意来说一说你是怎么解决的?

  预设1:

  28÷8×10

  =3.5×10

  =35(元)

  (先算出每吨水的价钱,再算出10吨水需要多少钱)

  预设2:

  10÷8×28

  =1.25×28

  =35(元)

  (也可以先求出用水量的倍数关系,再求总价)

  教师:谁和这位同学的方法一样?

  【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

  3.激励引新。

  教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  课件出示以下问题,让学生思考和讨论:

  (1)题目中相关联的两种量是()和( ),说说变化情况。

  (2)()一定,()和()成()比例关系。

  (3)用关系式表示是()。

  (4)集体交流、反馈。

  板书:

  教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (5)根据正比例的意义列出比例式(方程)。

  学生独立完成,教师巡视。

  反馈学生解题情况。

  解:设李奶奶家上个月的水费是x元。

  28:8=x:10或()

  8x=28×10

  x=280÷8

  x=35

  答:李奶奶家上个月的水费是35元。

  (6)将答案代入到比例式中进行检验。

  教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?

  (7)学生交流,汇报。

  【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

  4.变式练习。

  教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

  张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

  (1)比较一下此题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,请学生说一说是怎样想的。

  5.概括总结。

  教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

  学生讨论交流,汇报。

  (1)分析找出题目中相关联的两种量。

  (2)判断它们是否是正比例关系。

  (3)根据正比例的.意义列出比例。

  (4)最后解比例。

  (5)检验作答。

  教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

  【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

  (三)巩固练习

  1.只列式不计算。

  (1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

  (189:3=x:9)

  (2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

  (x:3=6:4)

  2.用正比例解决问题。

  (1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

  (2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

  【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

  (四)课堂小结,拓展延伸

  同学们,谁来说说,上了这节课,你收获了什么?

  【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

正比例教学设计11

  教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

  教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

  教学目标

  1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的'基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

  2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

  3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

  难点:运用比例的知识解决一些简单的实际问题。

  课前准备课件。

  教学流程设计意图

  一、比的知识:

  1.举例说说什么是比?什么是比的基本性质?

  2.说一说用比的知识可以解决哪些实际问题。

  3.完成教科书第83页“练习与实践”。

  (1)完成第一题:学生独立数出班上男女生人数,再完成此题。

  (2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

  二、比和分数、除法的联系

  出示:a∶b=()÷()=(b≠0)

  1.先填空,再说说这样填的根据是什么?

  2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

  3.练一练:

  (1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

  (2)填空:

  =()÷()=()∶()

  (填好后展示学生不同的结果。)

  三、比例的知识

  1.什么是比例?

  2.比和比例有什么关系?(小组讨论后交流)

  3.比例的基本性质是什么?

  4.比例的基本性质有什么作用?怎样解比例?

  5.练一练:完成教材第83页的“练习与实践”。

  (1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

  估计后再算一算,来验证估计。

  (2)完成第3题:解比例,做好后选两题验算一下。

  四、完成教材第84页“练习与实践”。

  (1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

  (2)完成第5题:

  第一小题让学生独立得出:深色与浅色地砖铺地面积的

  比是20∶40,化简得1∶2。

  第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

  (3)完成第6题。

  五、评价小结:

  学了本课你对所学知识有什么新认识?还有什么问题?

  通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

  沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

  对比和比例进行比较,强化理解,进一步优化知识结构。

  复习解比例。

  应用比例分配知识解决实际问题。

正比例教学设计12

  教学内容:教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。

  教学目标:

  1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。

  教学重点:

  结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。

  教学难点:

  能跟据正比例的意义判断两种相关联的量是否成正比例的量。

  教学准备:

  教学过程:

  一、导入

  谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?

  学生讨论,反馈。

  [设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]

  二、教学例1

  1、出示例1的表格。

  提问:表中列出了哪两种量?(板书:时间和路程)

  观察表中的数据,哪一种量的变化引起了另一种量的变化?

  指名回答。

  谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)

  为什么说路程和时间是两种相关联的量?

  学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的`几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)

  2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?

  学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……

  提问:你能用一个式子来表示上面的规律吗?

  根据学生回答,板书:=速度(一定)

  3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)

  [设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]

  三、教学“试一试”

  1、出示“试一试”,学生自由读题。

  2、让学生根据已知条件把表格填写完整。

  3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。

  4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

  [设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]

  四、归纳字母公式

  1、比较例题和“试一试”的相同点。

  提问:观察上面的两个例子,它们有什么相同的地方呢?

  (1)都有两种相关联的量;

  (2)两种相关联的量相对应的两个数的比值总是一定的;

  (3)两种量都成正比例。

  2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

  根据学生的回答,板书:=(一定)

  交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

  [设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]

  五、巩固练习

  1、完成第63页“练一练”。

  学生独立思考并作出判断,要用完整的语言说出判断的理由。

  2、完成练习十三第1题。

  (1)让学生按题目要求先各自算一算、想一想。

  (2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

  3、完成练习十三第2题。

  (1)让学生独立判断,并指名说说判断的理由。

  (2)注意引导学生有条理地说明判断的思考过程。

  4、完成练习十三第3题。

  (1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

  (2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。

  (3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  [设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]

  六、全课总结

  这节课你学会了什么?通过这节课的学习,你还有哪些收获?

  [设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]

  七、作业

  完成《练习与测试》相关作业。

  板书设计

  正比例的意义

  时间和路程路程和时间是两种相关联的量。

  =80=80=80……

  =速度(一定)

  =(一定)

正比例教学设计13

  导学目标

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  导学重点:成正比例的量的特征及其判断方法。

  导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

  预习学案

  填空

  1、如果路程时间=()(一定),那么()和()成正比例。

  2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。

  3、如果yx=k(一定),那么()和()成正比例。

  导学案

  学习例1

  在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。

  高度24681012

  体积50100150200250300

  底面积

  体积和高度有什么变化?观察他们的比值,你发现了什么?

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  yx=k(一定)

  想一想,生活中还有哪些成正比例的量?

  小组讨论交流。

  看书P40例2。

  (1)题中有几种量?哪两种量是相关联的量?

  (2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

  (3)它们的数量关系式是什么?

  (4)从图中你发现了什么?

  (5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的`体积是多少?225立方厘米的水有多高?

  三、课堂小结:

  什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

  课堂检测

  下列各题中的两种相关联的量是否成正比例关系,并说明理由。

  1、正方体的棱长和体积

  2、汽车每千米的耗油量一定,耗油总量和所行千米数。

  3、圆的周长和直径。

  4、生产800个零件,已生产个数和剩余个数。

  5、全班的人数一定,一、二组的人数和与其他组的人数和。

  6、和一定,加数与另一个加数。

  7、小苗牌2B铅笔的总价和购买枝数。

  8、出油率一定,所榨出的油的重量和大豆的重量。

  课后拓展

  从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?

  板书设计

  成正比例的量

  高度/cm24681012

  体积/cm350100150200250300

  底面积/cm2

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  正比例表达式:yx=y(一定)

正比例教学设计14

  赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节

  课的个人看法:

  一、注重数学和生活的联系,课堂灵活开放。

  老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的'高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。

  二、如花微笑,温暖学生。

  这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。

  三、用问题引领学生,突出学生的主体地位。

  “如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。

正比例教学设计15

  教学内容:

  教科书第59页例5以及相关练习题。

  教学目标:

  1、使学生能正确判断题中涉及的量是否成正比例关系。

  2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

  3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

  4、在成功解决生活中的实际问题中体会数学的价值。

  教学重点:

  利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

  教学难点:

  正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

  教具准备:

  小黑板

  教学过程:

  一、复习铺垫,激发兴趣。

  1、填空并说明理由。

  (1)速度一定,路程和时间成( )比例。

  (2)单价一定,总价与数量成( )比例。

  (3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

  【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

  3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

  生1:把旗杆放下量。

  生2:爬上去量。

  生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

  师:相信通过这一节课的学习,你一定会找到解决的方法的。

  【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

  二、揭示课题、探索新知。

  1、小黑板出示例5

  张大妈:我们家上个月用了8吨水,水费是12.8元。

  李奶奶:我们家用了10吨水,上个月的水费是多少钱?

  思考:题中告诉了我们哪些信息?要解决什么问题?

  师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  (1) 学生自己解答。

  (2) 交流解答方法,并说说自己想法。

  算式是:12.8÷8×10

  =1.6×10

  =16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

  (也可以先求出用水量的倍数关系再求总价。)

  10÷8×12.8

  =1.25×12.8

  =16(元)

  【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

  师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  (3)小黑板出示以下问题让学生思考和讨论:

  1)题目中相关联的两种量是( )和( ) ,说说变化情况。

  2)( )一定,( )和( )成( )比例关系。

  3)用关系式表示是( )

  (4)集体交流、反馈

  板书: 水费 用水吨数

  12.8元 8吨

  ?元 10吨

  水费:用水吨数 = 每吨水的价钱(一定)

  师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的'。

  (5)根据正比例的意义列出比例式(方程):

  学生独立完成,教师巡视。

  反馈学生解题情况。

  8

  12.8

  10

  χ

  解:设李奶奶家上个月的水费是χ元。

  12.8 :8 =χ:10 或 =

  8χ=12.8×10 8χ= 12.8×10

  χ=128÷8 χ=128÷8

  χ= 16 χ= 16

  答:李奶奶家上个月的水费是16元。

  【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

  (6)将答案代入到比例式中进行检验。

  你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

  生交流,汇报。

  2、变式练习。

  刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

  张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  (1)比较一下改编后的题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,学生说一说你是怎么想的?

  3、概括总结

  师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

  学生讨论交流,汇报。

  师总结:

  1、分析找出题目中相关联的两种量。

  2、判断他们是否是正比例关系。

  3、根据正比例的意义列出比例。

  4、最后解比例。

  5、检验作答。

  【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】

  三、巩固练习,形成技能。

  1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

  师提醒:同一时间、同一地点的身高和影长成正比例。

  学生读题后,先思考以下三个问题。

  ① 题中已知哪两种相关联的量?

  ②它们成什么比例关系?你是根据什么判断的?

  ② 你能列出等式吗?

  生独立完成,并汇报解答过程。

  2、教科书P60“做一做”。

  生独立解答。

  【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

  四、全课总结

  通过今天的学习,你有什么收获?

  五、布置作业

  练习九第3、5题。

  板书设计:

  用比例解决问题

  水费 用水吨数 解:设李奶奶家上个月的水费是χ元。

  12.8元 8吨

  ?元 10吨 12.8 :8 =χ:10

  8χ= 12.8×10

  水费:用水吨数 = 每吨水的价钱(一定)

  χ=128÷8

  χ= 16

  答:李奶奶家上个月的水费是16元

【正比例教学设计】相关文章:

六年级数学正比例教学设计10-11

教学设计的设计07-17

《穷人》的教学设计 穷人教学设计09-25

教学设计07-11

数学教学教学设计04-15

《雪儿》教学设计12-13

化学的教学设计12-14

《树叶》教学设计11-09

莫高窟教学设计09-19