《可能性》教学设计(15篇)
作为一位不辞辛劳的人民教师,总不可避免地需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教学设计应该怎么写呢?下面是小编为大家收集的《可能性》教学设计,希望对大家有所帮助。
《可能性》教学设计1
教材分析
本课时主要让学生通过简单实验,认识可能性的大小,并在此过程中学习画“正”字记录数据。这部分内容的教学,一方面可以使学生加深可能性的认识,为进一步学习游戏规则的公平性以及定量分析可能的大小奠定基础,另一方面可以使学生掌握更多的收集整理和描述数据的方法,提高用统计方法分析和解决问题的能力。
学情分析
在二年级上册的统计与可能性单元中,学生已经学习过一些简单的可能性知识,知道有些事件的发生是确定的,有些事件的发生是不确定的,会用“一定”“可能”“不可能”等词语描述一些简单的事件发生的可能性。这些是学习本单元的直接基础。此外教材在此安排的画“√”记录数据、涂方块表示数据,以及分类数据等内容对本单元内容的学习也有着重要的影响。学生可以理解和接受常见事件发生的可能性,但对可能性的大小还很抽象,如果没有相应实验数据的支持,要让学生感受新知、应用新知确实有点牵强。
教学目标
1、 使学生通过摸球、根据情境设计方案、判断等活动,初步体会某些事件发生的可能性是相等的。
2、经历和体验收集、整理、分析数据的过程,学会用画“正”字的`方法收集和整理数据,体会统计是研究、解决问题的方法之一。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。
教学重点和难点
教学重点是通过活动认识一些事件发生的可能性。
教学难点是理解任意摸一次球,摸到红球和黄球的机会是相等的(可能性是相等的)
《可能性》教学设计2
一、谈话导入
同学们,兔子家族正在运动场上举行长跑比赛,推选出的6名运动健将个个雄心勃勃,想取得胜利,你们猜猜谁能得第一?(指名回答)要是再来一场比赛呢?
是呀,在不同的比赛中,每一只兔子都有可能取得胜利,这就是可能性。
(板书课题)
这节课,我们就一起动手动脑体会可能性。
二、小组游戏
师:接下去我们一起玩摸球游戏。每个小组里都有一个袋子,袋子里放有4个白球,2个黄球。摸球要求如下(小黑板出示):
1、每组4个人,再分成两个小组,分别为白队和黄队。
2、每次摸一个球,摸球时不可打开袋口看,摸完后再放回袋中。
3、每组的2人中,一人摸球,共摸30次;一人记录,把结果记录在练习纸上。
4、摸到白球次数多的算白队赢,摸到黄球次数多的算黄队赢。
师:按这样的游戏规则,你们猜一猜谁赢的可能性大一些?
学生游戏。
同学之间交流结果。
三、引导探究
1、师:现在我要给赢的队颁奖,你们有意见吗?
2、黄队为什么不同意?指名学生说说自己的想法。
3、师小结:黄队认为袋中的黄球个数比白球少,摸到的可能性就小;反之,白球的个数比黄球多,摸到的可能性就大,所以,这个游戏规则从一开始就是不公平的。对于这样的分析,大家同意吗?
4、学生发表意见:比赛要公平,取胜才光荣。
5、你们认为怎样修改这个游戏规则,比赛才公平?
(小组讨论,修改规则)
6、集体交流得出:在袋中再放入2个黄球或拿掉2个白球,使白球和黄球的数量一样多。
7、学生根据新的游戏规则重新开始游戏,并统计结果。
8、活动反思:通过刚才两组摸球游戏,你对游戏的公平性有什么认识或想法?在刚才的合作过程中,你们小组有没有什么好的做法或不足?
四、巩固应用
1、完成“想想做做”1-3题
2、阅读资料。
学生先自己阅读再交流体会。认识到:随着实验次数的不断增加,正反面向上的次数会越来越趋向于相等,硬币正反向上的可能性是相等的。
五、课堂总结
用一句话说说这节课的收获或体会。
反思:
本节课我以游戏贯穿整堂课的探究新知中,使学生在好奇、有趣的情感体验中有序、有效地完成了新知的探究、尝试应用的学习任务。
1、实践是学生最好的老师,学生在实践活动中学到的知识往往会记忆深刻。因此,我在这节课中创设兔子赛跑的情境,调动学生的学习兴趣;以摸球的游戏形式,让学生亲身参与到摸球的实践活动中,只有这样,学生的思维才能展开,问题才会自然而然地被学生发现并解决。
2、课堂上时间分配比较合理,学生参与面广,游戏的广度深度符合学生的特点,整堂课气氛活跃,能够体现学生的主体地位。
3、虽然是一节实践活动课,数学的思维方法还是要渗透的.。在第一次师生共同摸球时,就渗透了一些摸球的方法:摇一摇,不能偷看,为后面的小组实践打下了基础。
4、尊重相信每位学生,给他们充足的探索空间。
5、数学学习是充满这观察与猜想的活动,因此,运用观察、猜想这些策略是非常有价值的,本课的摸球游戏是按“现实情境--猜想--实验――验证猜想——分析原因”这一数学思考的线索展开的。经过两次的循环,帮助学生建构起正确的数学认知,同时培养了学生合作学习的能力及自主探究新知的能力。
《可能性》教学设计3
设计理念
创设活动情境,促进新知建构。“用分数表示可能性的大小”是在学生(第一学段)学了“可能”与“一定”,初步体验了事件发生的可能性有大有小(四年级)和初步体验事件发生的等可能性的基础上进行教学的,是实现可能性从定性到定量描述的重要内容。“概率”因其有别于讲究因果关系的逻辑思维和确定性思维,具有独特的思想方法。因此,本课知识的建构和能力的形成不能只凭教师口述,而要通过创设数学活动情境,为学生提供观察、猜测、合作交流的机会,让学生在亲历活动过程中体会如何用数来表示可能性的大小。如课始摸球比赛后提出“如何表示从三个箱子中摸球的结果”,沟通了学生已有知识经验;“还有别的表示可能性大小的方法吗”则引导学生从活动中抽象出“数”,进而用“数”表示可能性大小,促进了知识的迁移;课末“归纳总结用数表示可能性大小的方法”,提升了学生对知识的系统认识,帮助学生建构新知。
加强合作交流,引导自主探索。《数学课程标准(实验稿)》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”教师以“分别用什么数来表示从这三个箱子中摸到白球的可能性大小”和“为什么用1/5来表示从2号箱中摸到白球的可能性”,引导学生自主探究、合作交流,教师适时引导,较好地体现了课程改革理念。
渗透数学思想,发展数学思维。在学生知道用数表示可能性大小的基础上,适时引入用线段上的点表示可能性大小,让学生感悟数形结合的数学思想;在引导的同时,抓住有利时机向学生渗透极限思想,不仅发展了学生的数学思维,还凸现了数学教学的基础性、发展性理念。
教学目标
1.通过试验操作活动,进一步认识客观事件发生的'可能性大小。
2.能用适当的数表示事件发生的可能性大小。
3.在具体情境中体验可能性的大小,加强对数学实践性的理解。
教学过程
一、导出课题
1.激趣。老师提供三个箱子:1号箱里面放有5个黄球;2号箱里面放有1个白球和4个黄球;3号箱里面放有5个白球。请3个学生进行摸球比赛,摸到白球最多的获胜。摸球前,各自选一个球箱,并且只能在选定的箱中摸球。每次摸出1个球,记录后放回去再摸,每人摸6次。
2.揭题。教师从摸球的结果导出“不可能”、“可能”、“一定能”,进而从“可能”中引出可能性有大有小,同时引导学生质疑:还有别的表示可能性大小的方法吗?(教师板书课题)
[课始从学生熟悉的游戏引入,能激起学生的学习欲望。]
二、自主探究
1.引导学生独立思考,自主探究:可以用些什么数分别表示从这三个箱子中摸到白球的可能性大小。(师生共同完成表格)
2.学生汇报,老师板书学生的表示方法。
[探究可以“用什么数”分别表示三个箱子中摸到白球的可能性大小,促进学生积极主动地参与,为后续的研究提供素材。]
三、强化新知
1.讨论:
(1)从2号箱中摸到白球的可能性大小可用哪个数表示?(学生可能会用20%、0.2、1/5表示。)
(2)为什么可能性用1/5表示呢?(引导学生分析分子、分母分别与试验中的什么有关。)
(3)师(拿出2号箱中的1个黄球):摸到黄球的可能性怎样表示?为什么这样表示?
引导小结:从2号箱中摸球,可能摸到黄球,也可能摸到白球。但由于箱中黄球、白球的数量不同,所以摸到黄球和白球的可能性也不同。
[本环节是教学的重点也是难点。学生初步知道可以用1/5表示从2号箱中摸到白球的可能性大小,但开始时学生对用这个分数表示并不完全理解。因此,教师的引导显得特别重要。]
2.探究:怎样表示“不可能”和“一定”。
从1号箱中可能摸到黄球吗?白球呢?可以分别用什么数表示摸到黄球、白球的可能性大小?
(类似地让学生自行设计从“3号箱”中摸球的方案并解答。)
3.练习:教师往2号箱中依次加入1个黄球、1个白球、又1个白球,让学生分别说出能摸到白球、黄球的可能性大小。
[学生初步了解用分数表示可能性大小的意义后,及时进行巩固练习,使学生学得扎实有效。]
四、总结提升
1.归纳总结用数表示可能性大小的方法。
2.提升认识,发展思维。借助线段图,让学生知道可能性的大小还可以用线段上的点表示。引导学生观察某点从线段的左端移到右端引起可能性大小的变化情况,直观地描述可能性的变化趋势。
[这个环节教师着力引导学生归纳总结,使知识系统化。教师在介绍用线段上的点表示可能性大小的同时,结合动态的演示,自然渗透数形结合与极限思想。]
《可能性》教学设计4
教学内容:
人教版义务教育课程标准实验教材五(上)第99-100页。
教学目标:
1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。
2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。
3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。
4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。
教学重点:体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
教学难点:用分数表示可能性的大小。对随机思想的理解。
学情分析:
学生在三年级上册已经初步体验有些事件发生是确定的,有些则是不确定的,并能用"一定""不可能""可能""经常""偶尔"等恰当的词语来描述事件发生的可能性的大小。学生对简单的分数已经有了初步的认识,并且系统的学习了有关小数的知识,知道小数与分数之间的关系。学生除了已经具备相应的知识基础以外,在生活中学生经常用石头剪刀布或掷色子等游戏规则来玩游戏,所以生活经验也是丰富的。本课就是在学生具备了以上知识基础和生活经验的基础上进行教学的,使学生对"可能性"的认识和理解逐步从定性向定量过度,不但能用词语表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
教学过程:
一、玩游戏引入。
游戏规则:双方轮流按顺序报数,每人每次最多只能报2个数,谁抢到6,谁就是赢家。通过游戏,学生发现秘密:谁先报数就一定会输。
师:用什么办法决定让谁先报数才算公平?
预设:石头剪刀布、丢硬币、转转盘、掷色子……
理念:游戏导入,激发兴趣,同时让学生带着如何让游戏更公平的任务研究数学问题,培养公正、公平的意识。用一个游戏贯穿整节课始终,让游戏和学习自然的结合在一起,更能让学生体验到学习数学的乐趣。
二、研究游戏学习新知。
(一)研究丢硬币体验等可能实事件
师:丢硬币公平吗?为什么?(正面朝上与反面朝上的可能性都是一样)
师:这节课我们来研究在不确定现象中可能性大小问题。(揭题)
师:可能性的大小,我们可以用数来表示。谁知道掷一枚硬币正面朝上的可能性是多少?(,%,0.5)
师:为什么可以用这些数表示?(都表示一半)
师:如果用表示,那么分母2表示什么?分子1又表示什么呢?
师:掷一枚硬币,正面朝上的可能性是,反面朝上的可能性是多少呢?()
师:现在你能进一步来分析丢硬币是公平的吗?
师:估计掷10次、30次、50次硬币,正面朝上可能会有几次?
师:你估计的理由是什么?(5÷10=0.5,15÷30=0.5,25÷50=0.5)
师:下面我们就来验证一下,结果会不会是这样。
操作要求:1、同桌合作,一人掷硬币20次,另一人记录正面朝上和反面朝上的次数。2、试验结束后,前后桌合作,统计共掷硬币40次正面朝上的次数。
3、小组长用计算器计算正面朝上的次数除以40的商
师:把我们的比较结果与0.5比较,你有什么发现?
出示一组数学家研究的数据
师:现在你又有什么发现?
师:实际操作的结果跟可能性大小往往会有差距,但是通过大量的实验后,实际操作的结果就会很接近,如果试验的次数再不断增加,就会越来越逼近。
师:数学家抛了八万多次,老师计算了一下,如果每5秒钟抛一次,也要五天五夜不吃不睡什么都不做的去抛,如果要过正常人的生活最少也要10天,想到这里时,老师就被数学家身上所散发出来的一种东西感动了,你知道是什么东西感动了我妈?
理念:由掷硬币引入,让学生知道可以用数来表示不确定事件发生的可能性大小。通过动手实验和数学家的实验数据,体验频率与概率的关系,让学生初步感知用数表示可能性大小的意义,并能对简单事件的可能性做出预测。
(二)探究游戏规则的公平性
①研究转转盘
师:刚才我们通过研究,用掷硬币的方法决定谁先报数是公平的,下面我们就来玩一玩。在玩之前,老师想把同学们分为n组,再从其中的一组中选一名代表与老师比赛。(几组要看班级具体的人数而定,选代表时,可以课前把学生的`名字写在纸条上,再用抽签的方法选出代表)
出示:(略)
师:用这个转盘公平吗,为什么?(事件发生的可能性大小不同,造成游戏的不公平)怎样比较公平?
出示:(略)
师:这样公平吗?那你觉得现在你们组被抽中的可能性是多少?分子分母各表示什么?(用转盘确定了一组)
②研究抽签
师:由于课堂时间有限,我觉得跟一大组人玩还比较浪费时间,想在这个大组里抽签抽选一个特邀代表跟老师玩,用抽签的方式公平吗?
师:现在在这一组中,每个同学被抽到的可能性是多少?如果还没有确定你们这一组呢?
师:这里的可能性为什么会发生变化?
(抽出一名学生上来玩一玩)
师:如果我想再玩一次,他还有可能被抽到吗?抽到xx的可能性大还是抽到他的可能性大?
理念:通过比较引出不确定事件的可能性是有大小的,体验到游戏的公平性与不确定事件发生的可能性大小有着密切的联系。用转盘很直观,更能激发学生对分数原有的认知。通过对某一同学被选到的可能性进行计算,让学生体验到某一事件的概率大小与总可能数有关,培养概率素养。进一步学习用分数表示可能性的大小。"如果我想再玩一次,他还有可能被抽到吗?抽到xx的可能性大还是抽到他的可能性大?"这里主要渗透了独立事件互不干涉的概率思想。
③研究扑克牌
出示a、2、3、4、5、6,6张扑克牌,其中有3张红桃,3张梅花。
师:老师规定抽到a我先报数,抽到其余5张你们先报数,可以吗?
师:你能设计一个公平的游戏规则来确定谁先报数吗?
师:这些不同的游戏规则有没有共同的地方?()说一说这里的6表示什么?3又表示什么?
师:设计一个规则,让老师报数的可能性是你们的两倍,能设计吗?
4、小结:同学们,刚才我们通过玩抢6游戏,发现游戏的不公平,我们就研究并创造了一些公平的游戏规则,在这个过程中你学到了什么?
理念:会根据要求设计公平的游戏规则,并能从数学的角度进行分析,进一步培养概率素养和用数学解决问题的能力。设计2倍的可能性,发展学生的思维能力。
三、应用
师:研究可能性充满趣味,而且可能性在我们生活中运用也是非常广泛。
1、阅读下面几句话,你有什么话要说?
a、福利彩票的中奖率是1/10000000
b、明天下雨的可能性是9/10
c、我想知道这些种子的成活的可能性是多少,我可以怎么做呢?
2、我们学校门口有个小贩子进行一个摸球抽奖游戏:他的规则是在10个球中抽
中红球的奖给你10元钱,抽中白球的则你给他3元钱。你怎么看待这个事情?
(1个红球,9个白球)若是摸10次,计算一下谁赚了?
3、师:可能性在我们数学上有一个专门的名字--概率。概率不仅在生活中应用广泛,而且在数学里它也是一门非常重要的学科,它是怎么发展的呢?让我们来看一个资料。阅读概率的发展史(播发音乐)
理念:让学生感受到概率在生活中的广泛应用,会数学的眼光看待并分析生活中的现象。渗透数学文化教育,让数学课更有内涵。
板书设计:可能性的大小
掷硬币转转盘抽签抽扑克牌
正面:1/21/31/163/6
反面:1/21/48
《可能性》教学设计5
教材分析
在三年级的学习中,学生已经认识了可能性的大小,在四年级的学习中,他们又认识了等可能性,而本学期所学的概率知识主要是用分数表示可能性的大小,所以说,本学期所学的内容是在前两个年级的基础上的一个延伸与发展。教材在呈现本专题的内容时分为三个部分:首先呈现了提供给学生开展试验活动的材料,通过学生的试验进一步体会摸出一个球颜色的可能性的大小;其次呈现了“想一想”的内容,通过讨论第1盒与第2盒摸球的结果,将描述可能性的语言“不可能”与“一定能”转化为数据表示,即客观事件中“不可能”出现的现象用数据表示为“可能性是0”,客观事件中“一定能”出现的现象用数据表示为“可能性是1”,通过这种描述语言转化为数据表示的过程,为学生后续用分数表示可能性作了铺垫;再次呈现了“说一说”的内容。由于学生已有前面的基础,在“说一说”的过程中,将重点讨论第3盒与第4盒摸球结果的表述方法,即用分数的形式,具体地表述可能性大小的结果。
教学策略分析
在教学活动中,根据教材呈现的内容及学生的实际情况拟安排以下教学的程序。
一是在实验操作中,复习可能性大小的认识,同时通过这个实验操作起到激发学生学习兴趣及导入课题的作用。在三、四年级,学生已经有了可能性大小的认识,所以在导入新授的阶段,教师组织学生进行“摸球比赛”活动。本活动按“摸球比赛——猜想——验证——导入”的活动过程,让学生可从活动中体验出可能性是有大有小的,从而导入课题。并以此活动为后续教学埋下伏笔,当然还起到一个激发学生学习热情的作用。
二是探究如何将“不可能”、“一定能”、“可能”等描述性语言转化为数据表示。学生通过自己的探究及全班同学的合理筛选后,得出像第1盒这种不可能摸出白球的,可以表示为摸出白球的可能性是0,而像第3盒这种一定能摸出白球的,可以表示为摸出白球的可能性是1。接着,教师可趁热打铁,让学生用“可能性是0”和“可能性是1”来说明生活中的不可能事件和必然事件。之后,教师把重点放在探究第2盒这种可能摸出白球的情况,可用什么数据来表示合适?这是本课的重点也是难点。最后让学生在思辨中得出可用分数来表示可能性的大小。
三是通过一定的练习让学习会用数来表示事件发生的可能性大小。这个练习重点放在不确定事件的发生的可能性大小上,且练习的要求是逐层提高,以让不同的学生能有不同层次的发展。
教学内容:北师版五年级上册第87页内容 摸球游戏
教学目标:
1、通过试验操作活动,进一步认识客观事件发生的可能性大小。
2、能用适当的数表示事件发生的可能性大小 。
教学重难点:
重点:会用数表示可能性的大小。
难点:会用数表示可能性的大小。
课前准备:
1、1、3个箱子,里面分别装着5黄球、1白球4黄球、5白球。3个放球盆。
2、8个放球盆,里面放1白球2黄球。
3、每生2张表格。多媒体课件一套。
教学设计:
[ 片断一] 游戏激趣,导出课题
1、游戏激趣:教师提供三个箱子,里面分别放有5个黄球,1个白球4个黄球,5个白球,让学生分组进行摸球比赛,看哪个组摸到的白球最多为胜。
(请3个学生参加,每人代表一组。每次只摸出1个球,摸出后要先把球先放去才能再摸,每人摸6次)
2、引疑揭题:由不公平的比赛让学生产生疑问,再从摸出的结果中导出“不可能、可能、一定能”,并从“可能”中引出可能性有大有小,同时引导学生质疑,难道只能用以前学过的这些文字来表示可能性的大小吗?进而由此引出课题。(教师板书课题)
[设计意图:兴趣是最好的老师,课初以学生熟悉喜欢的游戏比赛引入,生动有趣,激起学生的学习欲望和疑问,并从学生的争辩意见中引出课题,起到较好的导入效果。]
[ 片断二] 动手操作,自主探究
1、引导学生独立思考,自主探究:要分别用什么数表示这三个箱子摸到白球的可能性的大小。让学生把数填在表格上,同时课件出示如下表格。
2、学生汇报,教师板书出学生的不同的表示法。 [ 设计意图:把课堂交给学生,要让学生尽可能地自己去发现,去创造,教师只是这个过程的引导者,这样培养出来的学生才有创新能力。本环节是在学生强烈的学习欲望被调动后,马上抓住最佳的思考契机,让学生探究“可以用什么样的数”分别表示三个箱子摸到白球的可能性大小,由此能产生较好的探究需要,也为下面的讨论研究提供了平台和素材。]
[ 片断三 ]质疑筛选,形成新知
1、先引导质疑:是不是几位同学所举的这些数可以用来分别表示上述三种摸球的结果呢?接着让学生先探究“不可能”和“一定能”的两种情况分别用什么数表示比较合适。
引导学生从“不可能发生的”的几种方法中,找出合适的`表示方法(可能性是“0”——用“0”表示简单明了)。再用同样方法找出“一定能发生”的现象——用可能性是“1”来表示。
2、适时解释应用:让学生例举生活中上述两种现象的例子,并用语言进行相应的表达。
[ 设计意图:通过学生生成的资源,让他们在争辩中分析取舍,教师在关键处给予引导,在学生对“不可能”可用“0”表示、“一定能”可用“1”表示的意见认同后,及时联系生活实例,能使学生感悟到数学源于生活又高于生活;这样的设计不但体现学生的学和教师的导的和谐统一,而且针对性强,课堂效率高。]
3、再组织学生通过对2号箱摸到白球的可能性大小及同学所写的不同数的分析中,确定可以用分数“ 1/5”来表示比较恰当。
(1)启发引导:为什么可以用1/5来表示呢?
教师:(拿出2号箱的1个黄球)这个球有可能被摸到吗?这就是一种可能;(再拿出另1个黄球)这个球有可能被摸到吗?现在有几种可能?(指着箱中所有的球)这个箱子中的5个球都有可能被摸到吗?总共有几种可能?其中摸到白球的可能有几种?所以,摸到白球的可能性大小用数来表示应该是多少?从而让学生理解用分数表示可能性大小的意义。
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
[设计意图:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
[设计意图:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]
[ 片断四 ] 归纳总结,提升认识,发展思维
1、归纳总结:
师:以前我们只会用文字来表示可能性的大小,通过今天的学习,我们又懂得了用数来表示可能性的大小,会更加准确明了。
2. 提升认识,发展思维:
借助线段图
让学生知道,可能性的大小还可以通过线段上的点来表示。在教学时,注意引导学生观察某一点从线段的左端到右端,从线段的右端到左端的位置移动引起可能性大小的变化情况,直观描述可能性的变化趋势。
[ 设计意图:在这个环节,教师引导学生进行归纳总结,让他们对知识有一个系统的认识是非常重要的。同时,教师在介绍用线段上的点来表示可能性的大小的同时,抓住有利时机,结合作线段图等动态的演示过程,自然而然地向学生渗透了“数形结合”和“极限”的数学思想。]
[ 片断五 ] 应用数学,活用数学
(一)基本性练习
1、填空:
(1)抛掷一个骰子,出现3点朝上的可能性是( ) 。
(2)某单位有73名员工举行抽奖活动,总共有73张奖票,每个员工都能中奖。设有一等奖3名,二等奖10名,三等奖60名,第一个抽奖者能抽中一等奖的可能性是()。
(3)如右图,转动转盘,指针指向阴影部分
的可能性是()。
2、判断:
(1)据推测,今天本地降雨的可能性是4/5,意思是今天本地一定有雨。( )
(2)抛掷一枚硬币,正面朝上的可能性是1/2,也就是说,抛20次就一定有10次正面朝上。( )
(二)拓展延伸:
*挑战自我:盒子中放着只是颜色不同的3个球,其中2个黄球1个白球,现在要求一次拿出两个球,你认为拿到2个都是黄球的可能性是多少?
师根据学生的回答板书出 1/3、1/2、2/3
合作,交流:学生先认真观察,然后再在小组内交流:用哪个数表示才对?教师巡视。
学生汇报,争辩。针对学生不同意见,教师作如下引导:
1、化抽象为形象。
请1男2女3个同学上台,分别代表1白球和2黄球。
问:把其中不同的两个球(同学)配成一对,总共有几种结果?(几种可能)?(生:3种)而拿到2个都是黄球的可能有几种?(1种)所以可能性是?(生:1/3)
2、化形象为抽象。
师:(课件)把这三个球排成一排,并分别标上字母a、b、c;
问:你能用以前学过的搭配中的学问来解释这个问题吗?(生:可能是ab也可能是ac,也可能是bc) [“课标”中强调,要让学生学有价值的、必需的数学,让不同的学生能有不同层次的发展。所以这部分的拓展练习,不仅使学生加深对用分数表示可能性的大小的意义的理解,而且还能让不同的学生能有不同层次的发展。在练习中,教师让学生先进行独立思考,观察、分析,在形成自己的认识后,再进行交流。这样留足了思维空间,使学生能有效地学习。同时教师的引导也十分讲究,为帮助学生理解,先通过模拟演示,化抽象为形象,再联系已有知识,进行,化形象为抽象,体现了数学化的建构过程。]
《可能性》教学设计6
教学目标:
1.通过试验操作活动,进一步认识客观事件发生的可能性大小。
2.能用分数表示可能性的大小。
教学重点:学会用分数表示可能性的大小,体会到数据表示的简洁性与客观性。
教学难点:学会用分数表示可能性的大小。
教学关键:充分利用教材提供的情境,让学生在喜闻乐见的活动中探索新知。
教具准备:多媒体课件。
教学过程:
一、故事引入。
师:今天老师给大家准备了一个故事,请大家静静的来听。
很久,很久以前,有一个古老的王国,在这个王国里有这样一个规定,凡是被关进监牢的人都要用抽签,由上天来决定他的生死。怎么抽呢?在一个盒子里放入两张纸条,一个写着死,另一个写着活,抽到死就砍头,抽到活就释放。有一次一个大臣受人陷害,被关进了大牢。第二天就要进行抽签了,你们说说他的命运会如何呢?
(出示故事录音)
师:听了这个故事,你想到了什么?
生:这个大臣可能会死,也可能没有死。
师:你觉得这位大臣死的可能性有多大呢?
生:这位大臣死的可能性是1/2
师:也就是说,可能性的大小可以用一个数来表示今天这节课我们继续用摸球的游戏来研究可能性的大小可以究竟用哪些数来表示。(板书:摸球游戏)
[设计意图:采用“生死签”的故事情境导入,在学生回答“这位大臣明天的命运如何时”;学生有可能回答“大臣有可能死,也可能是生”,“大臣生或死的可能性为一半”;“这位大臣生的可能性是1/2,死的可能性也是1/2”等等。这时,老师引导学生讨论这几种说法的简洁性,得出可能性的大小最好用一个数来表示,从而揭示课题。]
二、共同探究新知。
(出示5个盒子,分别是2个黄球,2个白球,1个白球、1个红球,1个白球、7个红球,7个白球、1个红球)
1、活动一:用数字表示摸出黄球的可能性是“1/2”。
师:如果我把刚才这位大臣活的签用黄球来代替,用白球代替死的签,那么你会选择哪个盒子代表大臣的抽签命运呢?
生:取第三个盒子就行了。(1个白球、1个黄球)
师:同意吗?
师:从盒子里任意摸出一个黄球,摸出黄球的可能是多少?
生:从盒子里摸出一个黄球,黄球的可能性是1/2。
师:你是怎样理解的?
[教师使用喜闻乐见的素材,学生思考起来会感到非常有趣,也易于理解和掌握,从中获得积极的情感体验,同时也能进一步加深对以前所学习知识的理解和巩固,激发学生参与学习活动的兴趣,又激活学生原有的知识经验,使学生围绕这个问题展开思考和交流。]
1、活动二:用数字表示摸出黄球的可能性分别是“1、0、1/8、7/8”。
师:刚才我们拿了第3个盒子,从盒子里摸出黄球的可能性是1/2,那么还有4个盒子,如果从这些盒子中任意摸出一个黄球,你说,摸出黄球的可能性是多大呢?可以用什么数来表示?
(①信封,小组讨论和交流,汇报讨论结果)
师:分别说说你是怎样理解的?
师:刚才我们了解了从盒里摸出黄球的可能性,除了从盒子知道摸出黄球的可能性是多少,还可以知道谁的可能性呢?
生:还可能知道从盒子里摸出白球的可能性是多少?
师:那么从盒子里摸出白球的可能性是多少?
师:从表格中,你发现了什么?
生:两种可能性和起来为1。
师:只要知道其中一个球的可能性,另一种球的可能性就可以求出来了。
[设计意图:这个环节是整节课的重点和难点的突破口,是在学生对可能性的认识和分数的意义的理解和已有生活经验的前提下分析,为了让学生体验客观事件发生存在着可能性的大小,我充分给予学生讨论学习的空间,给他们营造一个宽松、民主的学习氛围,来体验“猜测与验证”的过程,感受到事件发生结果的确定性,“一定能”出现的现象用“可能性是1”的数据来表示;“不可能”出现的现象用“可能性是0”的数据来表示,可能会出现的现象用分数来表示。]
1、活动三:自由想像放球的个数,探讨从盒子里任意摸出黄球的可能性是几之几?
师:从盒子里任意摸出一个黄球的可能性除了用“1/2、7/8、1/8”的分数来表示可能性的大小外,你还可以怎么样放球,表示从盒子里任意摸出一个黄球的可能性是几分之几?
(②信封,小组讨论和交流,汇报讨论结果)
[设计意图:这个环节的设计充分体现了学生思维发展的自由空间,他们想怎么放就怎么放,一边放,一边说出摸出黄球的可能性,既对新知识的加以巩固,更重要的是培养了学生的创新思维,体现出学生的主体地位。]
小结:
师:通过刚才的活动和探讨中,我们了解到可能性的大小可以用什么数来表示?
生:分数。
师:还有吗?
师:表示一定能发生的事情用“可能性是1”来表示,不可能发生的事情用“可能性是0”来表示。
三、巩固练习。
1、回到引题故事,问大臣的命运会如何?
师:到了第二天,大臣的命运会如何呢?请听。
(故事录音)
就在这个时候,他的一个朋友告诉他,说有人趁法官司不注意的时候偷偷地把其中“生”的字条改成了“死”,你们猜一猜他明天的命运会如何呢?
师;现在大臣生的可能性又是多少?
生:大臣生的可能性是0。
师:生的可能性是0,那么死的可能性是多大呢?
生:大臣死的可能性是1。
师:你是怎样想的?
师:我们继续来听一听,大臣是否真的死了?
(故事录音)
他经过了一个晚上的冥思苦想,终于想出了一个好办法。到了第二天,他来到抽签现场,他明知道是两张都是死,他从中抽一张,然后在嘴中念念有词说:“小纸条呀,小纸条,我的命运都记托在你身上了!让我们同生共死吧!”说完,就把纸条吃到了肚子里面了。这时候大法官可着急了,说:“那可怎么办呀?”其他的官员说:“我们可以看看另一张纸条就知道,他抽的是哪一张了!”最后终于重获自由了。
师:大臣终于还是重获了自由。
[设计意图:是前面故事的延续,形成一条教学主线,“生死”签的改变等同黄白球的变化引起可能性大小的变化,增强了学生学习的趣味性。]
2、选择合适的数填在括号内,表示事情发生的可能性。
(1)公鸡生蛋的可能性是()。
(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。
(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。
(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。
[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]
3、根据可能性的大小,猜一猜遮住部分有几个球?
[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的`进一步的认识和理解。]
4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?
[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]
2、选择合适的数填在括号内,表示事情发生的可能性。
(1)公鸡生蛋的可能性是()。
(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。
(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。
(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。
[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]
3、根据可能性的大小,猜一猜遮住部分有几个球?
[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]
4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?
[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]
2、选择合适的数填在括号内,表示事情发生的可能性。
(1)公鸡生蛋的可能性是()。
(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。
(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。
(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。
[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]
3、根据可能性的大小,猜一猜遮住部分有几个球?
[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]
4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?
[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]
2、选择合适的数填在括号内,表示事情发生的可能性。
(1)公鸡生蛋的可能性是()。
(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。
(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。
(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。
[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]
3、根据可能性的大小,猜一猜遮住部分有几个球?
[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]
4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?
[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]
2、选择合适的数填在括号内,表示事情发生的可能性。
(1)公鸡生蛋的可能性是()。
(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。
(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。
(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。
[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]
3、根据可能性的大小,猜一猜遮住部分有几个球?
[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]
4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?
[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]
2、选择合适的数填在括号内,表示事情发生的可能性。
(1)公鸡生蛋的可能性是()。
(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。
(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。
(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。
[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]
3、根据可能性的大小,猜一猜遮住部分有几个球?
[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]
4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?
[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]
2、选择合适的数填在括号内,表示事情发生的可能性。
(1)公鸡生蛋的可能性是()。
(2)从4枝蓝铅笔中随意摸出1枝,摸出红铅笔的可能性是()。摸出蓝铅笔的可能性是()。
(3)一个盒子里装有3个红球,7个白球,摸到红球的可能性是()。
(4)标有1-10的小球放在一个小袋里,抽到偶数的可能性是(),抽到小于3有可能性是()。
[设计意图:是选择性的练习,目的是让学生巩固用不同的数来表示可能性的大小。]
3、根据可能性的大小,猜一猜遮住部分有几个球?
[设计意图:是通过“猜一猜”的游戏形式,发展学生的逆向思维,对用分数表示可能性的大小的进一步的认识和理解。]
4、“你说,我做;你做,我说;”说出我摆的东西的可能性是多少?
[设计意图:通过“你说,我做;你做,我说”,搭建一个师生、生生之间的互动的平台。]
四、全课小结。
1、师:通过本节课的学习,你对可能性问题有什么新的认识?
(能用分数表示可能性的大小)
[给自己一个梳理知识的机会,通过提示性的引导,让学生连贯的概括出可能性的大小与数量有关,可以用分数表示可能性的大小。]
《可能性》教学设计7
教材分析
人教版三年级上册的《可能性的大小》是属于[统计与概率]里中概率的起始知识之一,本节课主要目标是让学生知道随机事件的可能发生的结果,并通过简单的试验让学生体会事件发生的可能性是有大小的,概括出初步判断可能性大小的方法,体会单次事件发生的不确定性,并进行运用。其中让学生体会事件发生的可能性大小,理解数量越多发生的可能性越大,数量越少发生的可能性越小是本节课的重难点,因为对于这点认识学生的生活经验高于数学经验,如果在实验的过程中,发生小概率事件,也就是说数量少的反而出现的次数多时,学生可能将生活经验与之相联系,产生认识的迷惘,一旦处理不好会使整节课陷入混乱状态。因此处理起来要慎之又慎,只要引导学生了解试验少的时候,试验结果不一定与预测的可能性大小相符,但随着试验次数的增加,试验结果将越来越接近预测的可能性大小。
学情分析
基于以上的认识,我构建了“从生活中来,到生活中去”的基本设想,打算通过不同情境的创设引导学生去“猜想——验证——感悟”,最终建立起高于生活的可能大小的`认识。
从生活中来,就是尊重学生的原有的生活经验,创设“猜球”的情境,勾起学生已有的对于“可能性大小”的认知,初步判断出“数量多的发生的可能性大,数量少的发生的可能性小”。
生活经验要通过验证才能上升到理论认识,而其中的“小概率”事件,是提升原有认知的关键之处。因此,我采用了4:2的比例放球,排除一切干扰因素,组织小组摸球,比较、分析数据,体验概括出当摸球次数少时,是有可能发生小概率事件的,但当摸球次数越多原有猜想就越明显,从而使学生站在了数学的高度。最后,通过“摸奖”游戏,让学生体验随机事件的不确定性,最终完成对“概率”的初步体验。
到生活中去,就是尊重数学的基本使命——去指导,去解决生活中的实际问题。因此,我创设了“闯关游戏”,让数学以生动有趣的形式回归生活,使学生在轻松的氛围里,主动的去运用知识、解决生活问题。
教学目标
1. 能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的,概括出初步判断可能性大小的方法。
2. 通过体会单次事件发生的不确定性,初步体会频率与概率的区别。
3. 通过猜测验证感悟,培养学生大胆的想象力和逻辑推理能力,养成科学的学习态度。
4. 通过情境创设,激发学生学习数学兴趣,体会到数学和生活的联系。
教学重点和难点
教学重点:通过简单的试验让学生感悟到事情发生的可能性大小的情况,并能作出判断,进行描述与运用。
教学难点:当小概率时间发生时,如何抓住机会,引导学生知道“当试验少的时候结果可能与预测的可能性大小不相符,但当试验次数不断增加时,结果会越来越接近预测的可能性大小”
教学过程
一、引入可能性大小
[课堂引入讲究快、趣,需要用最少的时间调动学生的积极性,引入课题。“猜球”引入可以既增加神秘感,引起兴趣。又可以用最少的时间复习旧知,引出新知。]
二、探讨可能性大小
1、小组合作验证猜测结果:[这一环节的随机性很强,到底会出现什么情况我们无法料定。因此,我们能做的就是要排除各种干扰因素,准备好比较合理的试验材料,布置好活动的具体要求。其次,就是预设好可能出现的各种情况,有备无患。不断地引导学生将猜想和试验结果相结合,通过分析、比较得出猜想的正确性。]
2、体验单次摸球的不确定性
[这样设计,可以加大全班学生参与面,激发兴趣,培养发散思维。除了可以体验单次事件发生的不确定性,还可以体验到可能性大小中,质不变量变的情况。]
三、运用可能性大小
[这样设计,除了调节气氛,还可以预留悬念,为后面的思想教育打好基础。]
四、总结:
1、在全班同学的努力下,我们终于闯过了三关。能说说你现在的感受和你的收获吗?
2、师小结出示:知识会带给我们智慧和力量,有了它我们人类才能把不可能变为可能,把有可能的变成很有可能。希望小朋友好好学习,把获取知识的可能性变为最大。加油吧!
[这样设计,既可以总领全课,又可以将收获延伸到知识之外。]
《可能性》教学设计8
教学内容:
人教版三年级数学上册第104页主题图及第105页例1、例2。
教学目标:
1.知识目标:通过学习,使学生初步体验事件发生的确定性和不确定性,初步能用“一定”、“不可能”、“可能”等词语来描述生活中一些事情发生的可能性。
2.能力目标:经历事件发生的可能性的探索过程,初步感受随机现象统计的规律性。培养学生的猜想意识、表达能力及初步判断和推理能力。
3.情感目标:感受数学就在身边。进一步培养学生学习数学的兴趣、求实态度和科学精神。
教学重点:
通过游戏操作、分析推理,知道事件发生有确定性和不确定性。
教学难点:
利用事件发生的可能性的知识解决问题。
教具准备:
多媒体课件、两个盒、扑克牌、各种颜色的球若干个等。
教学过程:
一、游戏激趣,导入新知
1.猜牌游戏。
(展示一张7和一张8,洗牌后抽出一张)请同学们猜猜抽出的这一张牌是什么?
师:为什么意见不一样呢?这张牌有几种可能?(慢慢翻开另一张牌展示一下)现在能告诉老师,刚才抽出的这一张牌是什么吗?为什么?
2.小结展题
师:刚才的第一次猜牌因为不能肯定它是7还是8,所以结果有两种可能,(板书:可能),当老师已经展示另一张牌是7,所以刚才抽出的这一张牌一定是8,而不可能是7。(板书:一定、不可能)“可能”、“一定”、“不可能”是判断事件发生的可能性的三种情况。这节课,我们就一起来探讨事件发生的可能性。(板书课题:可能性,请学生打开课本)
二、合作研究,探索新知。
初步感知事件发生的不确定性和确定性。
(1)(屏幕出示主题图)引入:元旦快到了,我们班要筹备开一个元旦庆祝会,会上每个人表演一个节目。大家说说自己喜欢表演什么节目呢?
师:同学们喜欢表演的节目真多,我们就分成唱歌、跳舞、讲故事和其他四种节目类型吧。怎样确定由谁表演哪一种节目呢?请同学们观察第104页主题图后说一说方法。
(2)感知不确定事件。
讨论交流:如果用抽签的方法,每人抽一次,你可能会抽到什么节目?
师小结:用抽签的方法,每位同学抽到的节目是一件不确定的事情,有四种可能的结果。
(3)感知确定性事件。
师:用什么方法可以使每位同学表演的节目一定是自己喜欢的呢?(表演自选节目)
小结:每位同学能表演自己一定喜欢的节目是一件确定的事情,它只有一种结果。1.超级竞猜(体验一定、不可能、可能)
(1)体验事件的确定性:一定、不可能
师生共玩游戏,拿出一号盒。学生摇动盒子,随便抽出一个球,教师猜。(再揭示老师猜对的原因:盒里全是绿球。)还能抽出其它颜色的球吗?
得出结论:因为盒子里全是绿球,所以抽出的一定是绿球,不可能是其它颜色的球。
学生从二号盒里摸出绿球抽奖(指几人摸都不中,引导猜想:二号盒里根本没有绿球。)
得出结论:因为盒子里根本没有绿球,所以不可能抽出绿球。
师小结:当我们完全确定抽出来的结果只有一种情况时,我们就要用一定、不可能来作判断。(板书:完全确定)
(2)体验事件的不确定性:可能
师:既然这个盒子里不可能抽出绿球,那么同学们就不可能中奖,觉得这样的抽奖有意思吗?怎么解决?(把1号盒的绿球放进去)
师摇动,请学生上台抽,抽之前问:他从里面抽出一个球就一定能中奖吗?为什么?
小结:现在2号盒里有绿色、蓝色、黄色、红色三种颜色的球,那么,我们摸到的'球就有四种可能,能确定每次摸出球的颜色吗?(板书:不能确定)
下面:我们就来看看他的运气了。(学生抽,实际体验)
(3)可能性的综合体验。
小组讨论,学习例1。
2.小小判官(联系生活,内化提高)
(1)小组学习例2,再选题回答,并说说为什么?
(要求:个人思考,组内交流,班内汇报。)
(2)练习二十四第1题。
3.看书质疑。
三.活用知识,点拨深化。
1.你说我说大家说。
刚才我们大家都学会了用这么多词来表达活动中的各种情况,实际上,这样的例子还有很多很多,你能用一定、可能、不可能来说说生活里的事吗?请同学们先在小组内说一说,让其他同学给你评价评价,比谁想得又快又多。(小组交流)
师:现在,谁能把你的发现说给全班同学听?
2.聪明小画家
师:今天这么高兴,老师准备在我们班上办一个画展,请看要求,小组合作,涂好了把它拿上来,展示给大家看吧!比比哪个小组涂得又快又好!
(学生涂好了展示,全班评价)
4.我猜我猜我猜猜猜
猜猜他(她)是谁?老师每提示一次,学生就可以猜一次。
5.游戏总结,选出冠军小组.
四、全课总结、畅谈收获
感觉怎么样?你最喜欢哪一个游戏?有什么收获吗?
再过两个星期我们学校要举行校运会了,你们觉得我们班会赢吗?
赢得比赛是我们大家的希望,但是,比赛结果并不会随着我们的情感、意志而转移,我们可能会赢,也可能会输。结果究竟如何,就让我们拭目以待吧!
《可能性》教学设计9
教学目标:
1、通过“猜测——试验——分析试验数据”,经历事件发生可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,体会事件发生的可能性是有大有小的。
2、培养学生的猜测、实验和观察能力。
3、在活动交流中发展合作学习的意识和能力。
教学重点:
体验事件发生可能性的大小。
教学难点:
通过活动能知道事件发生的可能性是有大有小的。
教学准备:
课件、棋子(两种颜色)、小球(三种颜色)、大盒子、反馈练习、统计表格。
教学过程:
课前谈话:实物投影展示转盘,让学生亲自体验一下转盘得奖活动,初步感知事件发生的可能性大小。
一、激发兴趣,导入新知
看来像转盘的奖、抽奖等等许多事情发生的结果是不确定的,有可能发生,也可能不发生,这节课我们进一步研究可能性问题。(板书:可能性)
二、自主探索,获取新知
1、创设情景,激发探究欲望
师:通过刚才的转盘得奖活动,你有什么想法?
生:获得一等奖的可能性小,获得纪念奖的可能性大。
师:为什么呢?
生:因为一等奖占的面积大,纪念奖占的面积小。
师:是这样吗?下面通过大家的试验,验证一下是不是有这种规律存在。
2、设计摸棋子抽奖活动
师:我们共同设计摸棋子抽奖活动。袋子里只放入黑白两种颜色的棋子共10枚,其中黑棋子表示一等奖,白棋子表示纪念奖,根据你的生活经验,你打算怎样设计这次摸奖活动?
师:自己想一想,同桌两个人相互说一说。
3、汇报自己组的想法
生:黑棋子放1个,白棋子放9个,让中一等奖的人少一些。
生:黑棋子放3个,白棋子放7个,让中一等奖的人多一些。
师:按两人一组的想法,把棋子又轻又快的放入袋中。
4、小组合作实验
明确要求:1、每人各摸10次,一人摸另一人记录,不能看,摸完一次后放回去,要一要再摸。
2、把每次摸得的结果用画“正”字的方法进行统计并把结果填入表中,同时思考你发现了什么?
5、展示、汇报、交流
(1)把记录单按照黑棋子的.多少依次贴在黑板上。
(2)师:黑棋子少,摸到黑棋子的可能性就小,白棋子多,摸到白棋子的可能性就大。
(3)解决反例问题
师:为什么黑棋子少,摸出黑棋子的次数却多呢?说一说这是这么回事?
生再次实验(黑棋子1个白棋子9个或黑棋子2个白棋子8个)
师:通过我们的再次实验,看来黑棋子少,摸到的可能性就小。白棋子多,摸到的可能性就大。
6、师:可能性大小于什么有关呢?
生:可能性大小与数量有关。、
师:与在总数量中所占数量的多少有关。在总数中占的数量越多,摸到的可能性就越大,占的数量越小,莫大的可能性就越小。
7、师:横着观察一下,你有什么新的发现?
生:随着黑棋子数量的逐渐增加,摸出黑棋子的可能性逐渐增大了。
8、师:放5个黑棋子和5个白棋子会有什么样的结果呢?
生:有的摸出的黑棋子的多,也有的摸出的白棋子的多。
师:如果继续摸下去会怎样呢?猜一猜。
生:摸到的黑白棋子的可能性是差不多的。
师:正如你们的猜想,在很久以前科学家们就做了此项实验(介绍贝努力实验)
9、小结
通过刚才我们摸棋子的实验发现,袋中放几种颜色的棋子,就可能摸出几种颜色的棋子,但可能性的大小是有变化的。
三、拓展联系,深化新知
1、(出示一个盒子,上面标有共14个球,白球8个,黄球4个红球2个)。
师:如果老师只摸出1个球,可能是什么颜色的球,为什么?
生:因为盒子中只装有3种颜色的球,所以可能是白球,也可能是黄球或者是红球。
师:摸出什么颜色球的可能性大?什么颜色球的可能性小?
2、数学书第85页1题:连一连。
3、通过游戏,再次体验可能性大小。
8个分别标有1、2、3、4、5、6、7、8的球。
要求:1、甲乙二人,轮流从口袋中摸球,每次摸出一球。
2、摸出球的号码大于4,甲得到1分。
摸出球的号码小于3,乙得到1分。
3、甲乙各摸10次后,得分高的获胜。
问:如果你来参加这个游戏,你将怎样选择?
(1)当甲(2)当乙(3)甲或乙都可以。
4、师小结:这节课过得愉快吗?
《可能性》教学设计10
一、教学内容分析
1、教学的主要内容与编写特点
这一单元学习的内容有两个:①用分数表示事件发生的可能性的大小;②按指定可能性大小设计相关方案。本节课主要研究第一个内容,它是本单元学习的基础。
教材创设了摸球的情境,请学生借助5个装有不同数量的黄白两色乒乓球的盒子,讨论以下问题:①分别从这些盒子中任意摸出一个球,说说从不同盒子中摸到白球的可能性;②如果用数表示摸到白球的可能性,可以怎样表示?第一个问题是复习,第二个问题是讨论摸球可能性的数据表示方式。
用数表示可能性的大小,是对事件发生的可能性从定性到定量的一个重要转折。由于概率知识本身比较抽象,学生理解这部分知识有较大的难度。因此,教材安排了学生喜闻乐见的活动,旨在让学生体会到学习这部分知识的必要性,并能运用所学的知识解决现实问题。
2、教材内容的数学核心思想:不确定现象的特点和价值。
3、我的思考
教材编排的优点:借助学生的生活和学习经验,直接分析得到理论概率,避免在实验概率与理论概率的差别中纠缠。但不足的是:①缺乏丰富的现实背景,不能充分感受可能性的大小与生活经验的密切联系,对学习可能性大小的价值体现不够充分;②对分数表示可能性大小的丰富内涵揭示不够,容易导致学生用确定的思维去思考不确定现象,不利于学生随机观念的建立。
这节课研究的是简单的概率知识,而概率是研究随机现象的规律性的科学,小学阶段学习这部分内容,主要是为了培养学生的随机思维,让其学会用概率的眼光观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因为概率并不提供确定无误的结论,这是由不确定现象的本质造成的。因此,可能性的学习内容应该是丰富多彩的,也应该是有血有肉的。
为此,本课的教学设计在教学内容的处理方面有以下两点补充:
1、让学生在丰富的现实背景中体会学习用数表示可能性大小的必要性和价值。
2、结合生活现象,帮助学生理解用分数表示可能性的大小和用分数表示其它事物的大小有什么不同。
二、学生分析
1、学生已有知识基础
①分数的初步认识
②客观事件出现的可能性、可能性的大小、等可能性的认识。
2、学生已有经验、学习该内容可能的困难
在生活中学生接触过很多不确定现象,如收听天气预报、参加抽奖活动、玩扑克牌,玩石头、剪子、布的游戏,掷硬币,掷骰子,看电视上的有奖竞猜活动等,已经有一些相关的活动经验。
我们在前测中了解到,学生一般对用数表示可能性的大小没有太多的困难,但对不确定现象的理解仍然是个难点。比如,7个黄球,1个白球,任意摸一个,不可能摸到白球,因为白球少;前面摸到黄球,后面该摸到白球了。
3、学生学习的兴趣、学习方式和学法分析
学生喜欢探索自己熟悉的、有趣的,有挑战性的问题,喜欢探究的、合作的学习方式。因此,教学设计要充分考虑学生的特点和需要。
4、我的思考:
要使学生不断修正自己的错误经验,建立正确的概率直觉,必须直面学生的错误。一方面借助实验,记录原始数据,并就得出的数据进行讨论。对数据的讨论既能使学生对随机现象的特点加深体会,又能帮助学生澄清一些错误的认识,使学生逐渐体会到随机现象的不确定性。另一方面,确定性的注重因果关系的逻辑思维的干扰使学生认为“任意摸一次,可能性应该一样,不会是百分之八十”,解决这一问题的.办法就是唤起学生已有的经验,将生活中结果相等和机会相等的情境放在一起对比,激起学生的认知冲突,让学生在比较中感悟可能性相等的内涵。
三、学习目标
1、通过实验操作、分析推理,丰富对等可能性和不确定现象的理解,进一步认识客观事件发生的可能性大小,能用数表示可能性的大小。
2、初步学习用概率的眼光观察和分析简单的生活现象,发展合情推理能力。
四、教学活动
活动内容
活动的组织与实施(含教师活动和学生活动)
设计意图
时间分配
一、引入
教师出示放有黄白两种颜色乒乓球的盒子,请学生猜摸到的球会是什么颜色,并现场验证、反思。
激发兴趣
2分钟
二、研讨
在透明的玻璃盒中放球,请学生用数表示从盒中摸到黄球和白球的可能性。
初步学习用分数表示可能性的大小,明确可能性大小的范围。
15分钟
三、反思
1、 一个西瓜,两个人分,怎么分公平?
2、 一张电影票,两个人都想去看,怎么处理公平?
在解决实际问题的过程中体会结果相等和机会相等(可能性相等)的同与不同。
5分钟
四、应用
(一)
1、 天气预报降水概率是20%,你会带伞吗?如果是90%呢?
2、 甲药品治愈率90%,乙药品治愈率55%,你选哪家?为什么?
(二)
1、 87页2、3题。
2、 击鼓传花游戏中的学问。
联系学生的生活经验,体会学习可能性大小的价值。
在应用中进一步体会学习可能性大小的价值。
15分钟
五、拓展
提供拓展资料并进行分析
激发学生进一步学习的欲望
3分钟
《可能性》教学设计11
教学内容:青岛版小学数学二年级上册第八单元——统计与可能性中的信息窗2。
教学目标:
1.通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定”“可能”“不可能”来描述事情发生的可能性,获得初步的概率思想。
2.在解决问题的过程中,初步形成学生的判断、推理能力。
3.经历探索的过程,形成积极参与数学学习活动的兴趣,形成合作学习的意识。
重难点:用“一定”“可能”“不可能”来描述事情发生的可能性。
教学过程:
一、谈话导入
师:同学们你们喜欢做游戏吗?
生答(喜欢)
师:下面老师和大家做一个“猜一猜”的游戏。
二、创设情景、激发探究
1、初步感受事情发生的确定性。(摸球游戏)
(1)用“一定”来描述事情发生的确定性。
出示两种颜色的球。
师:老师把这些球放在盒子里一些,我现在从这里任意摸一个球,你们猜一猜老师会摸到一个什么颜色的球?
生:黄球。
生:白球。
师:到底什么颜色的球呢?(边说边摸出球,吸引学生注意力集中的看,师慢慢摸出球。)
师:什么颜色的球?
生齐声答:黄球。
师:猜错的同学不要灰心,还有机会,我们继续猜,谁想摸球?(点一名学生摸球)
师:准备好摸球,其他同学猜。
生:黄球。
生:白球。
学生摸出球。结果还是黄球。
师:猜对了很高兴,猜错了不要不高兴,还有一次机会。
生准备摸球,其他猜。
生猜。全猜黄球。
师:这次都猜黄球,没有不一样的意见了。
结果又是黄球。学生高兴。
师:为什么这一次你们都能猜对了,说说你的`想法。
生:我觉得这里面放得全是黄球,所以摸出的都是黄球。
师:还有谁想说一说自己的想法。
生:我认为里面只有黄球,所以拿出的都是黄球。
师:你们的猜想对不对呢?答案马上揭晓。
师打开盒子,学生齐说猜对了。
师:现在你最想说什么。
生:盒子里放得全是黄球,我们怎么摸摸出的都会是黄球。
师:他说的你赞成吗?
生:赞成。
师:我们用数学语言规范的说是,盒子里都是黄球,我任意摸一个摸出的一定是黄球。
板书:一定
师:再回忆刚才我们的做的摸球,在什么情况下,任意摸一球,摸出的一定是黄球。
(2)用“不可能”来描述事情的确定性。
出示另一个盒子,再来做摸球游戏。
师:我们再来做“猜一猜”的游戏,谁来配合大家做这个游戏呢?找坐得最端正的来吧!
师:做好准备了,好!把手伸进盒子里。才这次摸的是不是黄球呢?
生猜。有的猜黄球。有的猜白球。
师:揭晓答案。(白球)
师:再来猜这一次摸的是什么球?
生答案不一
答案是白球,不是黄球。
第三次摸球,猜是什么球。
答案基本一致白球。
师:在这个盒子里摸了三次,每次摸出的都是白球,不是黄球,你觉得是为什么呢?
生:里面只有黄球,没有白球,所以摸出的是白球,不是黄球。
生:……
师:他们的猜测对不对呢?想不想知道答案。
打开盒子,知晓答案。
师:不知道为什么的同学,现在知道问什么从这个盒子里摸出的不是黄球,而是白球了吗?谁想说一说呀?
生答
师:摸出的是白球,不是黄球。我们可以这样说从这个装有白球的盒子里一定能摸出白球,不可能摸出黄球。
板书:不可能
师:思考,在什么情况下摸出的一定是白球,不可能是黄球。
生答。
师:再看装黄球的盒子,从里面摸出的一定是什么,不可能是什么球呢?
(3)用“可能”来描述事情发生的不确定性。
师:同学们看如果我不这两种球放在一个盒子里,任意摸一个会出现什么样的情况呢?谁能大胆的猜测一下。
生猜测
生:黄球
生:白球
生:是黄球或是白球。
师:我们同学的猜想正确不正确呢?下面我们小组做摸球游戏,来验证我们大家的猜测是否正确。
师:在活动前老师提几个要求,同学们按照老师的游戏要求进行。(课件出示活动要求)
师在学生活动的时候巡视了解学生的活动情况。
活动结束。
师:讨论完的小组请坐好。各小组发言,根据你们记录的情况说一说你们的发现。
分小组发言。说不一样的发现,一样的就不要说了。
生:有的摸出白球,有的摸出黄球。
生:我们不能确定。
生:……
师:我们同学在游戏的过程中发现,摸出的球不一样,又是摸出白球,又是摸出黄球,你们的意思都是说不能确定,可能摸出白球,也可能摸出黄球。(板书:可能)当我们不能确定的时候就说可能是白球也可能是黄球。
师小结:我们在做摸球游戏的时候,学会了用一定、不可能、可能这三个词来说明在不同的情况下摸出的球是确定的,在什么情况下摸的球是不确定的。那位同学再来总结一下,在什么情况下摸出什么样的球呢?
生总结。
过渡:在我们的生活中有好多事情是一定发生的,有的是不可能发生的,有的是可能发生的。我们今天学生的可能性就是让我们找一找身边的数学,看看生活中有哪些事是一定,哪些事是可能,哪些事是不可能发生的。你们想不想去找呀?
三、课中操
我们先放松一下,然后再去找吧!
我们已经放松了,下面老师和大家去找生活中的可能性。
四、巩固练习
《可能性》教学设计12
教学内容:
北师大版小学数学教材四年级上册第95页、96页内容。教学目标:知识与技能
通过具体的操作活动,让学生直观感受到有些事件的发生是确定的,有些事件的发生是不确定的。
结合具体的问题情景,能用“一定”“不可能”“可能”简单描述事件发生结果。
过程与方法
创设抛硬币、摸白球及机智问答的情况,让学生亲历事件发生的可能性大不之分。充分关注学生的学习过程,对积极参与、勇于交流的行为给予充分的肯定和表扬。体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力和合作学习能力。
情感、态度和价值观
让学生在同伴的.合作和交流中获得良好的情感体验,感受到数学与生活的密切联系。让学生在活动过程中懂得数学存在于现实生活中,从而使学生产生积极的情感体验,激发学生学习数学的兴趣。
教学重点:
在具体的活动情景中体验生活中的确定现象和不确定现象。教学难点:
能用比较规范的数学语言对确定现象和不确定现象进行分析描述。教具准备:硬币、若干个红白颜色的乒乓球、两个黑色袋子教学过程:
一、回顾铺垫,游戏引入
1、师与生玩“剪刀石头布”的游戏
2、导出课题:今天我们一起在游戏中来研究事情发生可能性的情况。(板书:可能性——不确定性)
二、学标展示
通过这节课的学习我要学会用“一定”“不可能”“可能”简单描述事件发生结果。
三、活动体验,探究新知
1、抛硬币活动(研究不确定现象)a猜测:硬币落地后是正面还是反面向上?b学生分组进行抛硬币活动,观察并记录。 c小组汇报抛硬币的结果。
d引导学生用规范的语言描述并小结:我们把像这样的,可能出现的结果不止一种,而使用人们事先不能确定的现象叫做“不确定现象”。
e在生活中,还有哪些游戏活动具有不确定性的结果,并描述一下。
2、摸球比赛(研究确定现象)
a指名两位同学上台摸白球比赛,共进行6局,比赛3局后交换再摸。 b引导学生用“一定”“不可能”来描述从两个袋子摸出白球的情况。 c教师小结:像这样结果只有一种的情况,我们就用“一定”、“不可能”来描述这种确定现象。
四、达标检测
1、完成练一练第一题,指导学生用规范的语言描述。
2、联系生活,巩固认识完成练一练第二题
五、拓展延伸,迁移应用
用“可能”“一定”“不可能”这些词语说一说生活中的事。
六、收获回顾指名谈谈本堂课收获板书设计:
不确定可能
不确定性一定确定不可能
《可能性》教学设计13
教学内容:
教材P106—107
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习关于“可能性”的知识。
二、实践探索新知
1、教学例3(比较两种结果的可能性大小)
(1)观察、猜测
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报:
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的'次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的
2、教学例4
(1)出示盒内球(一绿四蓝七红)
(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?
3、P106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
三、练习
P1094
第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。
P1095
《可能性》教学设计14
教学内容
小学六年级教科书第131页例1、例2,课堂活动第1、2题,练习二十六第1--3题。
教学目标
1.通过实践操作,体验事件发生的可能性及游戏规则的公平性。
2.进一步感受事件发生的可能性是有大小的,知道可以用一个数来表示可能性的大小。
3.会求简单事件发生的可能性。
教学重点
感受不确定现象,讨论比较简单的用一个数来表示事件发生的可能性。
教具准备
课件、乒乓球和卡片等。
教学过程
一、玩游戏导入,复习旧知
1、玩小魔术,激趣。
2、玩真的:一个小纸团,任意放在一只手中,可能在哪一只手中,(可能在左手,也有可能在右手)也就是说有两种可能性,可能性的大小是多少?(能回答给予鼓励)
今天我们就来研究可能性大小的相关知识。(板书课题---可能性大小)
3、检测对以前所学知识的掌握情况:请用“一定”、“可能”、“不可能”来判断下列事件发生的可能性,并简要说明理由。
地球每天都在转动。()
三天后下雨。()
太阳从西边升起。()
小方吃饭时用左手拿筷子。()
小明的年龄比他爸爸小。()
4、过渡语:对以前所学知识的掌握得非常好,相信这节课会合作愉快,轻松学会、掌握新知识。
二、动手操作,探究新知
1.摸乒乓球游戏(教学例1):出示课件
(1)教师口述并演示:袋中有3个相同的球,分别标上数字1、2、3。从袋中任意摸出一个。可能摸出几号球?有几种可能的结果?你能用一个数来表示可能性的大小吗?
(2)猜一猜(四人小组内合作议一议)。
学生:可能摸出1号球、2号球或3号球。
有3种可能的结果。
1号1/3,2号1/3,3号1/3(引导或鼓励会用分数来表示可能性的大小了)
教师:也就是说,摸出三号球的可能性相同,都是1/3。
(3)试一试(摸一摸)。两个同学上台(一个同学摸,一个同学或全班记----用画“正”字的方法记录)(摸、记、放回再摸,连续3--15次):验证每个号球出现的可能性。
(4)反馈明确:(摸出每个号球的次数接近;如果继续摸下去,摸的次数越多,摸出每个号球的次数越接近),这说明从袋中摸出每个号球的可能性是相同的,摸出三号球的可能性都是(1/3)。
2、摸卡片游戏(课堂活动第1题):(出示课件)
生:齐读游戏规则。
师:这个游戏规则公平吗?你是怎么想的?
生:同桌交流后汇报(公平,共10张,1和0各5张,各占一半,可能性是1/2)
师:也就是说,可能性相同的情况下,游戏规则具有公平性。
分左右两组,各选两位代表上台,一人摸一人记录,全班同学监督:先摸3次,得分相差多少?再摸3次,......
明确:取的次数越多,得分就越接近,胜的可能性就越接近,获胜可能性是1/2。
教师小结游戏规则的公平性及事件发生的可能性。(事件发生的可能性有大有小,游戏规则中各方可能性相同的情况下,游戏规则才具有公平性。
过渡语:现实生活中,很多人为了赚钱,设计了一些不公平的游戏。希望同学们要高度警觉,不要中了这些人的'圈套,上当受骗。
3.教学例2。
转盘游戏:出示一个大的转盘(上面有三个区域,红色区域占整个圆盘1/2,黄色和蓝色区域各占整个圆盘1/4)。
(1)游戏(方案)公平吗?为什么?
生:不公平,……
师:也就是说,红色区域的面积大,占了整个圆面积的1/2;黄色区域和蓝色区域的面积小,各占整个圆面积的1/4;所以这个游戏规则不公平。同时也说明,面积越大,可能性越大。
(2)怎样设计这个转盘才公平。
同桌交流后汇报:
平均分成三份,三种颜色各选择其中一种,三人的可能性都是1/3。
平均分成四份,四种颜色各选择其中一种,三人的可能性都是1/4。
(3)计算:指针停在四种颜色区域的可能性各是多少?(1/4)
如果转动指针100次,估计大约会有多少次指针是停在红色区(100x1/4=25)
4.抽牌游戏:1、2、3、4四张牌,抽出小于3的甲胜,大于3的乙胜。
这样约定公平吗?为什么?
小于3的有1和2,占四张中的二张,可能性是1/2。
大于3的只有4,占四张中的一张,可能性是1/4。
你愿意是甲,还是乙?(甲——选择可能性大的)
师:这说明了什么?(数量越多,可能性越大。
三、运用新知,解决问题
1.练习:练习二十六第2--3题。
要求:学生先独立完成,再同桌互议,最后集体反馈、评价。
四、学生谈收获
通过这节课的学习,谈一谈你有哪些收获?
附板书设计:
可能性的大小
1号---------1/3红区-------1/2小于3的--------1/2
2号---------1/3黄区-------1/4
3号---------1/3黄区-------1/4大于3的--------1/4
可能性相同--------公平面积越大,可能性越大数量越多,可能性越大
《可能性》教学设计15
师:我这里有4个任务分别交给4排同学完成,看哪一排的同学完成的又好又快。现在我们来看每一个任务都是什么?(大屏幕展示:向魔术袋中装球:1号一定摸出黄球;2号可能摸出黄球;3号不可能摸出黄球;4号不可能摸出白球。)
(学生以小组为单位进行装球,教师巡视指导。)
师:完成的小组用正确的姿势告诉老师你们已经完成了,下面进行小组展示。
(1号任务的3个小组上台展示)都在袋中装了2个黄球。(学生自己评判)
(2号任务的3个小组上台展示)其中一个组装了1个黄球2个白球;另外两个组装了2个黄球1个白球。(学生自己评判)
(3号任务的3个小组上台展示)都在袋中装了2个白球。(学生自己评判)
(4号任务的3个小组上台展示)都在袋中装了2个黄球。(学生自己评判)
师:成功完成任务的小组每组得到一颗智慧星,合作好的小组再加一颗智慧星。现在,请同学们看,三组得智慧星最多,这个小组一定会是冠军吗?
生:不一定,可能会是冠军,其他小组也可能会是冠军。
师:是啊,在我们的生活当中,有些事情是一定发生的,有些事情可能发生,还有些事情不可能发生。
三、有效训练
师:在日常生活中哪些事情可能发生,哪些事情一定发生,哪些事情不可能发生呢?同桌两个相互讨论一下。
师:谁想跟大家来说一下?
生:太阳不可能从西边升起。
生:月亮一定从东边升起。
生:明天比赛可能会赢。
师:下面请你来当小法官。(多媒体课件)我们一起用一定、不可能、可能这三个词来判断一下生活中的这些现象。
①太阳从东方升起。(一定)
②今天下雨。(可能)
③金鱼离开水能继续生存。(不可能)
④明天比赛我得第一名。(可能)
⑤明天是12月30日。(不可能)
⑥王阿姨快生宝宝了,会生个女孩。(可能)
四、全课总结
师:看看我们哪个小组得到的智慧星最多,哪个小组获胜,谁能用上这三个词来说一下这次的课堂比赛成绩。
生:三组获胜。
生:二组不可能获胜。
师:下次三组也一定获胜吗?
生:不一定,有可能其他小组获胜。
师:对呀,下次哪个小组合作的好,哪个小组就有可能获胜。游戏做完了,你来总结一下这节课你学会了哪些知识?
生:学会了有些事情一定能发生。
生:我知道有些事情不可能发生。
生:学会了有些事情是有可能发生的。
生:学到了确定事情和不确定事情。
让学生在活动中体验数学
在活动中体验是生态课堂的重要特征。《数学课程标准》在课程目标的阐述中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动的动词,也强调了让学生经历知识的发生、发展过程,要关注学生的学习过程,让学生在课堂活动中体验数学。陈老师以学生亲身经历和体验过程为主线,设计了一系列的游戏活动,让学生通过游戏,玩中学,乐中悟,获得确定性和不确定性的直观感受,获得对数学知识的`体验、感悟。在有趣的学习活动中,老师和学生一同探讨、分享,创造了美好的生命经历。
一、在活动中体验
陈老师设计了多项活动,通过摸一摸(摸球)、装一装(按要求装球)、说一说(生活中有关可能性的事件)、连一连(自主练习)等实际活动,以此强化学生的自我体验,达到知情合一,从而能够用语言来描述事件发生的三种情况:“一定”“可能”“不可能”。首先从学生感兴趣的摸球游戏开始,学生注意力非常集中。在摸的过程中学生感受到游戏的不公平,在游戏出现矛盾时激发起了学生探究的欲望,在师生的互动交流中初步感知了什么叫做“一定”、“可能”和“不可能”,感受了事件的确定性和不确定性,体验了事情发生的可能性。在学生掌握了事情发生的可能性后,陈老师又设计了根据要求向魔术袋中装球的活动,学生在思考怎样装球以及还有什么其它装法的过程中,又进一步体验了事情发生的可能性。
陈老师用游戏的形式贯穿全课,让学生充分动手、动口、动脑,在活动中自己去探索数学知识与数学思想方法,在活动中体会成功的喜悦,使学生既体验感悟了新知,又感受到数学的学习其实并不是单调的、枯燥的和机械的,而是有趣的。
二、在活动中思考
赞科夫提倡:“教会学生思考,这对学生来说,是一生中最有价值的本钱。”在教学中,陈老师在给予学生充分活动的同时,利用“最近发展区”的原则,设置一些“跳一跳、摘果子”的问题情境,引导学生在活动中思考。设计了男女生摸白球游戏比赛,在摸球过程中,教师故意制造矛盾,让孩子感受到摸球的袋子中藏有秘密。学生的好奇心一下子被调动起来了,这一问题更使孩子的思维像喷发的火山,泉涌般产生了“在一个全装白球的袋中任意摸一个球,一定是白球”的观点,到这儿教师并没有让孩子喷涌的思维停止,而是顺水推舟“如果我们想让这个游戏公平的话,该怎么办呢?”再次把学生推到主人的位置,使孩子始终处于最佳思维状态,让每个孩子都能感受到“这些都是我们自己发现的知识!”在这种悬念下,学生积极参与小组的讨论争辩,表达自己的思维过程,通过“摸——议——猜——说”,顺理成章地引出“一定”、“不可能”和“可能”。教师为学生提供自主探索、合作交流的空间,学生经历了“体验一猜想一验证一归纳”的过程,探究的能力以及科学的态度都得到了培养。
,《可能性》教学实录与评析
在学生初步感知了事情的可能性后,又通过感兴趣的装球游戏,让学生在动手操作中进一步体验,巩固新知。装球游戏更具开放性、挑战性、创造性,学生要展开想象去猜想、去操作、去讨论、去判断,来解决问题。在装一袋摸到的可能是黄球这个活动时,学生的答案是多种多样的。开放的探索过程给学生提供了更多的参与机会和成功的机会,激发了学生学习的积极性,让每个学生在主动探索中得到发展,实现了人人学有价值的数学,人人都获得必需的数学。
三、在活动中应用
“数学从生活中来,到生活中去”。这个观点充分表明了理解知识、掌握知识的最终目的在于学以致用。而且,学以致用不止于结尾或课后,只要运用得当、合适,同样能收到意想不到的精彩效果。陈老师在教学伊始,就设立了小组评比栏,看哪个小组得星最多,为新知的应用埋下伏笔。在课中,陈老师小结各组得星情况,请学生猜一猜哪个小组有可能夺得冠军?这个小组一定会是冠军吗?让学生主动尝试着从数学的角度运用所学的知识和方法,寻求解决身边数学问题的策略,而且把所学的知识灵活服务于课堂常规教育,顺势鼓舞每组的士气,树立学生的自信心和挑战欲。课尾再次小结:今天的冠军是哪组?下次他们也一定是冠军吗?也是起到同样的效果。这样设计,帮助学生更好地理解和运用可能性的知识解决问题,提高了学生分析问题、解决问题的能力。
陈老师还注重紧密联系生活实际,鼓励学生去发现生活中的可能性问题,让学生找一找生活中有哪些事情是一定会发生,有哪些事情是不可能发生,有哪些事情可能会发生,运用“一定”、“可能”、“不可能”来说一说生活中的事,使学生感受到数学与生活之间的联系,内化可能性的知识,提高运用所学知识解决实际问题的能力。并根据学生的生活经验,判断生活中事情发生的可能性,帮助学生理解抽象的可能性问题。学生不仅学会了一些数学知识,也学会了用数学的眼光去观察生活,用比较准确的数学语言去描述生活中的可能性现象,体现了数学的实用性。
【《可能性》教学设计】相关文章:
《可能性》教学设计02-07
可能性教学设计01-25
《可能性》教学设计15篇02-12
五年级可能性教学设计02-26
《可能性》教学反思06-08
可能性的教学反思10-27
可能性教学反思04-17
五年级可能性教学反思04-08
教学设计模板-教学设计模板07-14
教学教学设计06-15