圆的周长教学设计18篇
作为一位优秀的人民教师,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么大家知道规范的教学设计是怎么写的吗?以下是小编精心整理的圆的周长教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆的周长教学设计1
教具、学具准备:
多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。
教学过程:
一、认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?
(生齐鼓掌!)
师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?
(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?
(板书课题:圆的周长)
(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
二.测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)
(2)师:除此以外,还有别的方法吗?
方法二:把圆放在直尺上滚动一周。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
三、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?
(圆的周长与直径有关系。)
师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。
(生实际测量、计算、填表)
3.展示汇报
师:哪一个小组愿意来汇报你们的数据。
师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)
师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?
4.揭示规律
师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!
屏幕出示图3:
师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?
(圆的周长总是它直径的3倍多一些)
师:这就是圆的'周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。
5.介绍小知识。
师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)
五、揭示圆的周长计算公式
师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?
(测量出它的直径)
师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)
师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)
(板书:C=πd)
师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?
(板书:C=2πr)
练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?
学生独立计算。汇报:唐老鸭跑的路程更远。
六、应用圆周长计算公式,解决简单的实际问题.
1.教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(课件出示)
(1)学生独立完成,汇报,弄清列式的依据。
(2)小结:已知直径求周长可直接套用公式。
2.通过媒体演示指导学生完成"做一做"作业。
饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?
小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.
五、总结,质疑,看书内化。
师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。
六、巩固练习。
1.判断。
(1)圆周率就是圆的周长和直径的比值。
(2)π=3.14。
(3)半径的长短决定圆周长的大小。
(4)同圆中,周长是直径的π倍。
2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?
3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?
4.求半圆的周长:d=6厘米(图略)
圆的周长教学设计2
教学目标:
1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。
教学过程
一、情景导入:
师:老师这里有一张图片,同学们想看吗?
师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?
师:我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?
师:这节课我一起研究圆的周长。
板书课题:圆的周长
二、探究新知:
1、圆的周长含义
师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。
师:围成圆的曲线的长叫做圆的的周长。
2、测量圆的周长师:怎样才能知道圆的周长是多少呢?师:请同学们拿出准备好的圆片,你能想办法测量出它的周长吗?生测量活动,师巡视。
师:谁愿意说说你是怎么测量的?
师:还有不同测量的方法吗?
师多媒体演示。
我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。
我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。
师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。
生:用绳子量出水池的周长。
师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。
师:有没有比测量更科学、更简便的方法呢?
生:计算
3、探究圆的周长计算方法
①探究圆的周长与直径的倍数关系
师:如何计算圆的周长呢?
师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?
师:计算正方形的周长需要什么条件,怎么计算?
师:同学们看,计算长方形、正方形的周长都需要一定的条
件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。
师:如果圆的周长与直径有关,又有什么关系呢?
师我们再来看,长方形的周长与它的条件长和宽之间有什么关系。
师:正方形的周长与它的条件边长之间有什么关系。
你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。
这个倍数会是几呢?同学们来猜测一下,这个倍数大于几
生1:大于2;
生2:大于3;
生3:大于4;
师:能说说你是怎样想的?
师:你从图上来看,圆的周长与直径之间的倍数会大于几。
生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。
师:有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?
生猜并说理由。
师:这个问题有点难,老师来作个辅助图形,请看大屏幕。
(师多媒体演示圆外切正方形)
师:你发现了什么?
生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。
师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?
生:计算。
师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。
下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。(小组活动,师巡视。)
师:一定注意要测量准确,减少误差。
(集体汇报交流)
师:哪个小组愿意把你们的计算结果给大家展示一下。
(生说并展示结果)
师:请同学们来观察这些圆的周长除以直径的商,有什么特点。
生:都比3大一点。
师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。
师:会读吗?(板书pài)
师:一起读,用手在桌子上写几遍。
师:会写了吗?
师:π就是圆的周长除以直径的'商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?
生:测量不准确。
师:很会分析问题,我们计算出的这些商都不一样,是因为测量有
误差造成的。
师:老师这里有关于圆周率的历史资料,同学们想看吗?
师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)
师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?
师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书C=πd)
师:如果知道了圆的半径,我们还可以怎样计算圆的周长?
(板书:C=2πd)
师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。
由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)
三、实践应用:
师:现在我们来解决几个问题好吗?
1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。
2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)
3、判断题
4、思考题
四、小结。
圆的周长教学设计3
一、创设情境,导入新课
1、复习旧知(播放课件)
师:同学们,你们知道正方形的周长与什么有关吗?(边长)那正方形的周长等于什么?
2、揭示课题。
师:现在,老师给你们变个魔术。(演示课件圆)
师:有的同学反应可真快!什么是圆的周长呢?这也是我们这节课要研究的内容。(板书课题),谁能说一说什么叫圆的周长?有的同学已经举手了。
生:围成圆的这条线的长就叫做圆的周长,师:这条线是什么形状的?
生:曲线
师:是曲线,那你能完整地说一遍吗?
生:围成圆的曲线的长叫圆的周长。(演示课件)
二、引导探索,探究新知
1、测量圆的周长的不同方法
师:老师这里有一个圆,那你们能告诉老师,“圆的周长指的是哪一部分的长”,同桌互相比画一下。
师:你们能量出圆的周长吗?(能)拿出你们的圆动手量一量,看看哪一组最会动脑筋,测量得又快又好。(学生小组活动)
师:老师看很多小组已经找到方法了,哪个小组愿意第一个到前面来把你们的方法告诉大家?(学生上台演示讲解)
师:这种方法还真不错!还有没有不同的方法?(再请一位学生上台)真善于动脑筋!为了大家看的更清楚些,老师把这两种方法重新演示一遍,(演示课件1:球在直尺上滚动一周,直接量出球的周长。演示课件2:线绕圆一周,然后量出线的长度)请同学们看屏幕:
师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出所有圆的.周长呢?
生:能!
(播放课件)转动绑着绳子的小球形成一个圆:能用刚才的方法量出这个圆的周长吗?生:不能!
师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?
2、探讨圆的周长与直径的关系
师:同学们真有信心!我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?
师:你觉得是和直径有关系,说说理由好吗?
师:现在请同学们观察大屏幕,(课件)你发现了什么?
生:我发现圆的直径越长,它的周长就越长。
师:观察得真仔细!那到底圆的周长与直径有怎样的关系呢?要解决这个问题,还请同学们继续测量,测量前先听好活动要求。(学生小组活动——测量)
师:好,现在我们来交流一下你们的实验结果。
(把学生的实验结果打在课件上)。
师:大家仔细观察分析,看能发现什么?
生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的比值都是三点一几。
师:这个同学真是好眼力。其他小组还有什么不同的发现吗?
生:所有圆的周长都是直径的3倍多一些。
师:看来大家的发现都一样,那我们再来看看这几个圆是不是也有这样的规律?(课件直观展示三倍多一点)看屏幕,注意仔细观察,看能发现什么?
生:圆不论大小,它的周长都是直径的三倍多一些.。
3、认识圆周率:
师:说得真好。圆不论大小,它的周长都是直径的三倍多一些.这是个固定不变的数,你们的这个发现和许多大数学家的发现是一样的,人们通常把圆的周长和直径的这个比值叫做圆周率,用字母π表示。(板书)
师:好,现在请同学们打开书63页,找出圆周率的概念,全班齐读。
师:圆的周长和它的直径的比值叫什么?用什么来表示?
师:老师收集了一些有关圆周率的资料,大家想看吗?看屏幕。(课件)
师:看了这些资料后,你了解到了什么?
师:我国古代人民真了不起!我相信:各位同学只要努力学习,将来一定会让我们中国成为世界上最强大的国家!
4、推导圆的周长的计算公式:
师:刚才我们用圆的周长除以直径求出了圆周率,那么谁能说一说到底怎样求圆的周长?能得出一个什么样的公式呢?
板书:C=πd
师:如果知道半径怎么求周长呢?
板书:C=2πr
师:这2个公式都可以来计算圆的周长,要求圆的周长必须知道什么条件?
生:圆的直径或半径。
5、现在我们就用我们推导出来的公式来解决问题,请看大屏幕。
三、初步运用,巩固新知
1、已知直径、半径求圆的周长
2、判断
3、已知周长求直径和半径
4、提问:小猴甩小球形成的圆的周长你会求吗?(课件)
四、小结
1、组织学生说说收获:
这节课你们学到了什么?
师:同学们从圆的周长、直径的变化中,看出了圆周率始终不变。如果我们长期坚持这样从变化中看出不变,你们就会变得越来越聪明。
圆的周长教学设计4
教学内容:
国标苏教版小学《数学》三年级(上)61、62页。
预设目标:
1.通过学生的操作、实践,感悟周长的含义,了解物体表面或平面图形一周边线的长就是它们的周长。
2.通过围、量、算等操作活动,引导学生自主探索测量、计算周长的多种方法。
3.体会数学与生活的密切联系,发展数学思考能力,享受学习的快乐。
预设过程:
【导入】
创设情境:1.介绍园区欣赏金鸡湖景色沿边线走一圈。板书:边线
2.来到二实小,指出足球场的边线。
3.宿舍门牌的边线。
【周长】
1.老师指数学书封面的边线,老师示范,学生跟着老师摸一圈
2.请同学摸一下其他物体的边线。(数学书,文具盒,黑板等)
3.完成书62页/2上描出每个图形
【课题】
这节课我们一起来认识周长,研究周长。板书:周长
【活动一】
1.出示:树叶硬币名片用直尺能直接测量哪个物体的周长?
2.学生测量名片的周长。
3.p61试一试
4.P62页想想做做4
【活动二】
测量树叶、硬币的周长
【应用】
1.讨论:如何测量金鸡湖、足球场、门牌的周长。
2.数学小知识:测量地球的周长。
3.周长在生活中的应用。
认识周长
执教:苏州工业园区第二实验小学单国红
一、课前谈话,创设情境。
师:你知道单老师来自哪里?
生:苏州。
师:苏州的工业园区,现在单老师带着大家到那里游玩一下。(欣赏苏州工业园区景色)
师:苏州的金鸡湖是苏州有名的湖泊,比杭州的西湖还要大,这里的景色非常优美。
看(出示金鸡湖景点地图,有水巷邻里、城市广场、湖滨达大道、金鸡湖大桥、现代广场、国际博览中心、望湖角、金鸡墩。)
师:你想到哪里去游玩?
生说景点名称,师点击介绍景点情况。
二、认识周长。
师:金鸡湖的景点很多,你怎么走可以一个不拉?
生:可以绕着它的边走。
师:(电脑勾勒金鸡湖的边)这就是金鸡湖的边线。我们学校在金鸡湖的东边,一起去看一看。(出示操场画面)这是我们学校的的操场。你能指出足球场的边线吗?
(生指出足球场的边线。)
师:足球场里面还有很多线,也是它的边线吗?
生:不是。因为这些线在周长的里面。
师:再一起到宿舍去参观。这是命名为玲珑湾的房间,它的边线在哪里?
(生指出房间门牌的边线。)
师:刚才我们到操场、宿舍找到了一些物体的边线,其实物体表面都有它的边线。拿出你的数学书,你能指出它的边线吗?
(学生指数学书的周长)
师:三角尺有边线吗?
(学生指三角尺的周长)
师:生活中其他的物体你也能找出它的边线吗?
(学生指铅笔盒、桌子、黑板、横幅、窗户、贴花纸、电灯的边线。)
师:看来物体的表面都有边线。我们把它们画下来看,这些图形有边线吗?你能描出它们的边线吗?
请你选两个自己最喜欢的图形,描出它们的边线。
(学生在作业纸上描。)
师:谁愿意把你描的边线上来展示一下?
(学生展示所描物体的边线。)
师:物体表面它一周的边线的长就是它的周长。那么这个长方形的周长就是指几条边的长度?
生:长方形的'周长就是指它四条边的总长。
师:那么这个半圆形的周长是什么呢?
生:半圆形的周长是一条横线和一条曲线。
师:梯形的周长呢?
生:四条直直的线。
师:这个房子的周长呢?(生答略)
师:这个脚印的周长呢?(生答略)
三、测量周长。
师:(边说边出示)老师带来了一张名片、采来的树叶、一个硬币,它们的周长分别是什么?(生分别指出三个物体的周长)
师:你认为它们的周长哪个最长呢?
生:名片的周长长一些,硬币的周长最短。
师:文具盒中有测量周长的工具吗?拿出来看看,你认为用这些工具最容易测量的是哪一个周长?
生:名片的周长最容易测量。
(学生四人小组,量出老师名片的周长。)
生1:我们一组先量长度是9厘米,宽度是5厘米,9加5等于14,有两条长和两条宽,就是28厘米。
师:(边指边说)他们通过直尺量出了这条边是9厘米,这条边是5厘米,然后再算出周长。
生2:我们一组计算方法不同,先量长两个9厘米,宽两个5厘米,就是28厘米。
师:他们也是只测量了两条边的长度,然后根据长方形的特征算出长方形的周长。有测量4条边的吗?
师:请你测量出三角形和一个四边形的周长。
(学生独立测出书上三角形、四边形的周长是多少。)
师:三角形的周长是怎么得到的?
生1:三角形的周长是13厘米,先算出长的边,标上去,是5厘米,这条边4厘米,这条边3厘米,合起来算出是13厘米。
生2:他算错了,5加4加3是12。
师:四边形的周长呢?
生1:最长的边是3厘米,最短是1厘米,上面也是3厘米是7厘米。
生众:错了!
生2:它有4条边,3加3加2加1是9厘米。
师:哦,少算了一条边,周长应该是围成它一周的四条边的长度。
师:下面老师给你一些图形各条边的长度,请你用合理的方法算出来它们的周长。
(出示一些标注各边长度的图形
○1三角形:5厘米、5厘米、6厘米。
生1:5加5加6。
生2:5乘2加6
生3:把6比作5,3个5是15,加上剩下的1是16。
○2三角形:3厘米、3厘米、3厘米。
生1:周长9厘米,3乘3是9厘米。
生2:3加3加3是9厘米。
生3:2乘3加3是9厘米。
○3平行四边形:3厘米、3厘米、4厘米、4厘米。
生1:4加4等于8,二三得六,合起来是14厘米。
生2:两个3加4等于14(厘米)。
生3:3加3加4加4。
生4:三四十二,加退掉的2是14。)
师:刚才我们通过测和算的方法得到了一些物体的周长(板书:测和算)。那么这两个物体你为什么不能用直尺测量周长呢?
生1:硬币是圆的,直尺不是圆的。
生2:可以量直径。
师(惊讶状):都知道直径了!
生3:量时做记号,就可以了
师:看来有的同学想出来了,要把这些弯弯曲曲的线变成直的线,然后再测量就可以得到它们的周长了。
师:可以用他们的方法,也可以用自己的好办法,从中挑选一个(硬币和树叶)小组合作测量出它的周长。
(小组活动)
师:哪些同学是测量的硬币的周长的?介绍一下?
生1:因为硬币很薄,我们把它摁在桌上,一个同学用线围它的边,再拉开是7厘米5毫米。
生2:我们也是量硬币,用另一种方法,把线围一圈再用剪刀剪断。
师:有没有同学量的是树叶的周长?
生1:把树叶对折,是两个这条边的长,量出一个就可以了。
生2:用线绕树叶,是16厘米5毫米。
师:除了用围的方法(板书:围)可以帮助测量硬币的周长,还有别的方法吗?
生:(疑惑状)
师:其实还可以用滚的方法(板书:滚。)。(教师教滚的方法:在硬币上作好记号,滚到那里停下来。学生用滚的方法试一试。)
四、周长测量的实际运用。
师:通过滚动的方法、围的方法,可以得到这些物体的周长。那么刚才我们认识了足球场的周长、门牌的周长、金鸡湖的周长。你认为用怎样合理的方法可以测量它们的周长呢?
生:门牌号用线绕一下线,再量。
生:足球场用尺量。
师:要用很长的尺量,用怎样的尺呢?
生:卷尺!
师:金鸡湖更大,它的周长怎么测量呢?相互讨论讨论,看哪一组的方法好。
生1:我们用卷尺量,作记号。
生2:金鸡湖弯的,我们可以量。
生3:我们走一步是1米,只要看走几步,就知道了。
师:这是一个好办法,数学上叫步测。
生4:我用真实的方法来测量。不是数学方法。我只要问一下那里的人。
生5:我只要去看一下路牌,上面会有多少米。
师:要测量比较大的物体的周长看来比较困难。但是在两千多年前就有一位数学家测量了地球的周长。你想知道他是谁吗?
师:公元前3世纪,古希腊就有一数学家叫埃拉托斯芬(结合电脑演示介绍)。
师:生活中很多时候都要测量物体的周长。比如说,花坛的周长、手绢的周长、跑道的长师:还有爸爸妈妈带我们到商场去买衣服、裤子,要测量
生1:胸围。
生2:还有腰围。
师:谁来演示一下?(生上台操作演示)哦,这样就得到了他的腰围。
师:这两天我们最关心的就是神舟六号。(出示神六轨道图片)它飞行的轨道一周长是
神舟六号发射成功标志着我国航空事业有了新的突破。我们要把基础打好,长大做一个对社会有用的人。下课!
说课反思
苏州工业园区第二实验小学单国红
说教材:
内容是国标苏教版小学《数学》三年级(上)61、62页。
周长是《数学课程标准》中空间与图形这一知识领域的重要教学内容之一,在生活中的应用也十分广泛。对于周长的教学应在学生探索了长方形和正方形特征的基础上,密切联系生活中常见的物体和图形,通过观察与积累,充分感知什么是周长,从而建立周长的概念。同时结合学生已有的知识经验,利用围、量、算等活动引导学生主动探究,彼此交流,测量、计算一个图形周长的方法,并鼓励学生运用周长的知识解决生活中常见的问题,在活动中巩固对周长的认识,发展数学思考,并为下面的长方形、正方形周长的研究进行准备。
说目标:
1.通过学生的操作、实践,感悟周长的含义,了解物体表面或平面图形一周边线的长就是它们的周长。
2.通过围、量、算等操作活动,引导学生自主探索测量、计算周长的多种方法。
3.体会数学与生活的密切联系,发展数学思考能力,享受学习的快乐。
说教法:
一、通过生活数学生活的教学结构,从而体现数学的生活性,实现人人学习有价值的数学的数学理念。
数学生活化,让学生学习现实的数学是数学新课程理念之一,所以,整个教学过程以游览金鸡湖为主线,使学生仿佛身临其境,在亲切的生活背景中自然地感悟周长的含义、探究周长的求法。课的一开始,游览金鸡湖切入口,认识物体表面的边线,从而引出周长。接着,通过指现实中有关周长的事例,让学生充分感知周长的含义,与此同时体会周长与生活的密切联系,产生学习需求。数学只有回到生活中,才会显示其价值和魅力,学生回到生活中运用数学,才能真实地显现其数学水平,因此,课的结尾,回到生活中去,使学生切实感受到数学来源于生活,应用于生活。
二、整个教学过程充分发挥学生的动手实践能力,通过摸一摸、描一描、量一量、算一算、围一围、滚一滚等活动,使学生体验做数学的过程。
新课标指出:数学教学是数学活动的教学。因此,本课安排了感知和操作两个层面的活动。第一层面是感知层面的活动,这里分为两次层次,先通过教师范例和学生自己举例让学生充分感知,为过渡到抽象的符号性奠定坚实的感性基础。接着,通过迁移类推让学生自己描出平面图形的边线感知平面图形的周长,这样,帮助学生从实物到平面图形建立完整的周长概念。第二层面是操作层面的活动,让学生在情境中自主探索求名片、树叶、硬币周长的方法,活动前提供一些材料,在教师地适当引导下学习数学,充分挖掘学生的创造潜能,培养学生的创新能力,然后让学生汇报各自的发现,在多种方法的交流中培养学生的创新意识。
这样,让学生在活动中发现、在生活中探究、在活动中互动、在活动中内化、在活动中应用、在活动中创造,体现学生是学习的主人,活动是学习数学的重要方式的教学理念。
三、在练习设计上,注意开放性和实用性,从而培养学生的应用意识
这个主要体现在以量、算为主要地数学方法,强调算法的多样化;其次测量周长方法上,也体现解题策略的多样化。滚、绕的方法重在得出,不求严密、规范。并要求学生进行拓展,如测量金鸡湖的周长等,同时引入古希腊科学家测地球周长的小知识,感受数学文化的价值。最后联系神舟六号的发射成功,激发学生的积极性和创造意识。
圆的周长教学设计5
教学目标:
1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。
2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。
3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:能正确、熟练地进行圆周长和面积的计算。
教学难点:从探究活动过程中去发现圆与正方形之间的关系。
教学准备:课件,学具。
教学过程:
一、复习旧知,梳理体系
直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)
教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?
小组合作,让同学们把所学的知识整理一下,然后进行汇报。
汇报交流,课件出示相关内容。
(1)圆的认识:
圆心O:决定圆的位置;
直径d:决定圆的大小;
半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;
圆是轴对称图形,有无数条对称轴。
(2)圆的周长:
围成圆的曲线的长度叫圆的周长。
圆周率:周长与直径的比,是个无限不循环小数。
圆周长的计算:。
(3)圆的面积:
由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。
圆面积计算:。
圆环的面积:。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
二、基本练习,整合知识
教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?
1.说说下面各题的最简整数比:
(1)一个圆的半径和直径的比是多少?(1:2)
(2)一个圆的周长和直径的比是多少?(:1)
(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)
周长的比是多少?(2:3)
面积的比是多少?(4:9)
【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的.各部分知识之间的关系。
2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)
(1)这个公园的围墙有多长?
教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)
(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)
(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)
(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)
【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。
三、探究学习,培养能力
1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)
(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)
(2)剪完圆后,哪张白铁皮剩下的废料多些?
教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)
(3)根据以上的计算,你发现了什么?
【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。
四、回顾总结,交流收获
教师:说说这节课我们学习了什么?你有什么收获或问题?
【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。
圆的周长教学设计6
课题
圆的周长
例题
教学目标
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能解决简单的实际问题。
2、使学生通过操作、计算,发现规律,培养抽象、概括的能力和探索意识。
3、通过介绍圆周率的史料,使学生受到中国古代在数学方面的成就。
手记
我在设计圆的周长这节课时,对
圆周长概念的教学做了淡化处理,新教材对概念和老教材比已经大大弱化了。目标是让学生知晓,不必死抠字眼。我的设计,力图在已有知识和新知识之间找到衔接点,故而在正方形内接圆这一点上,为探究直径和圆周长的关系做了新的尝试。之后的教学,希望在自主探索中培养学生的动手操作能力。先让学生独立思考,然后小组合作,大胆猜想圆的周长可能与什么有关,再引导学生通过实际计算几个大小不等的圆形物体的周长与直径的比值,使学生明确自己的猜想是否正确,再让学生在动手操作、测量、观察和讨论中经历探索圆的周长公式的全过程,充分发挥学生学习的主体性,激发学生学习数学的兴趣。
重难点
教学重点:圆周长公式的推导。
教学难点:圆周率的意义。
教学过程
资源
目标
学与教
一、开门见山,直奔主题
二、渗透“转化”,激发兴趣
三、合作探究,发现规律
四、运用新知,解决问题。
五、知识回首,概括总结
师生谈话,生活中的周长概念,教具。
教具、学具,学生已有的生活经验
学具、计算器、
实验报告单
习题
实物感知,触摸圆的周长,既激发学生的学习兴趣同时,也形象的让学生建立圆周长的概念。
让学生探索测量圆的周长的方法,渗透“化曲为直”的数学思想
测量的局限性引出寻找计算方法的必要性。
从猜想与观察中初步探寻周长与直径的关系。
通过操作,收集数据,计算比对后发现规律。
从周长与直径的比值引出圆周率的概念
从圆周率概念中演变出圆周长的计算公式
巩固运用、深化知识
学生对整节课所学知识进行梳理
(一)谈话引入,揭示课题。
上节课,我们一起学习了“圆的认识”,今天我们一起来研究圆的周长。(板书课题)
1、拿出一个圆片问:什么是圆的周长?请你指出老师手上圆的周长?再指出自己准备的圆形物体的周长。
2、提问:圆的'周长和我们以前学过的长方形和正方形的周长有什么相同的地方?又有什么不同?
(出示长方形、正方形、圆的图,让学生进行比较)
3、用一句话概括一下什么是圆的周长。
4、归纳:围成圆的曲线的长叫做圆的周长。
(二)探索测量圆的周长的方法
(1)教师接着问:长方形和正方形的周长,我们能直接用尺子测量出来,但是圆的周长能直接测量出来吗?比如这样的一个圆(铁丝围成的圆形)
生:拉直了再量一量。
师:为什么要拉直呢?(引出化曲为直的思想)
师再出示圆片问,这个能拉直吗?可以怎样得到它的周长?
你有什么好的方法?(同桌讨论)
汇报:(学生演示)
a、可以把圆在直尺上滚动一周,测出周长。
b、还可以先用绳子绕圆一周,测出绳子的长度,就是圆的周长。
教师评价:同学们想出的方法很好。刚才的方法有一个共同的特点是什么?
生:是把弯曲的线段转化为直的线段来测量。
师:做校服量你的腰围是不是跟这个差不多呢?
师板书:绕线法、滚动法------化曲为直
(3)教师问:这样的方法有局限性吗?举几个例。
生:比如说在操场上画的大圆的周长、广场上的圆形喷泉的周长、溜球绕在手指上旋转一周,形成了圆,它的周长不便用上面的方法。
师:用图片展示嫦娥二号绕月飞行的圆形轨迹,引发学生的感慨:测量的方法有局限性,那么我们就要找出求圆的周长的普遍方法。
(1)观察并猜想:圆的周长会和什么有关?有怎样的关系呢?
,圆的周长教学设计
(三个直径不同的圆提示周长与直径有密切的联系。)
(2)观察并思考:正方形与圆有何共同之处,圆的周长会超过直径的4倍吗?至少应大于直径的()倍。
(三)圆周长的推导。
(1)探索圆周长与直径的关系。
下面我们就来测一测,算一算,看看圆的周长和它的直径有什么关系?
让4人小组的同学进行合作,分别测量出3个圆形物体的周长和直径,并把结果记录在表格中。最后观察数据,有什么发现?
圆
直径(厘米或毫米)
周长(厘米或毫米)
周长/直径(保留两位小数)
圆1
圆2
圆3
我们的发现
(2)反馈。
请学生上台来展示,并且说说发现。
小结:同学们都发现了虽然我们测量的圆的大小不一样,但是圆的周长和直径的比值总是3倍多一点。
(3)教师用软尺绕学具圆一周,再将软尺沿直径绕三次演示3倍多一些,加深3倍多一些的印象。
3、教学圆周率。
师:其实任何一个圆的周长和直径的比值都是一个固定的数。我们把它叫做圆周率。(板书)用希腊字母π表示。
师:什么是圆周率呢?也就是说周长是直径的多少倍?
说到圆周率,老师不得不提起一位我们的祖先。(看63页你知道吗?)
上面的介绍,你有什么感受?
圆周率是一个无限不循环小数,在计算时,一般保留两位小数,π≈3.14。
4、圆周长的计算公式。
师:刚才,我们圆周率是怎样求出来的?(周长÷直径=圆周率)
师:根据圆周率你能求出圆的周长吗?
周长=直径×圆周率
(c=πd)
师:如果用半径求呢?
(c=2πr)
5、从最后的公式中可以看出,什么决定了圆的周长?
(四)解决问题
1、算一算。
求下面各圆的周长。
(1)d=4厘米(2)r=1.5米
师:求圆的周长必须知道什么条件?
2、判断。
(1)、任何一个圆的周长总是直径的π倍。( )
(2)、圆周率是任何圆的周长和直径的比的比值。( )
(3)、大圆的圆周率比小圆的圆周率大。( )
(五)、谈学习收获:
师:哪位同学能谈谈这节课你的收获与感想?
板书设计
圆的周长
圆的周长测量:滚动法、绳测法---------------化曲为直
规律:圆的周长总是它的直径的3倍多一些。
圆的周长÷直径=圆周率
公式:圆的周长=直径×圆周率
C=πd C=2πr
教学准备
每小组学生准备:一条绳子、剪刀、一把直尺、3个大小不同的圆。
圆的周长教学设计7
一、设计思路
本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。
二、教学过程与设计意图
教学目标:
1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。
2、结合教学内容进行爱国主义教育,激发学生民族自豪感。
3、培养学生大胆猜想、勤于思考、勇于探索的优良品质。
教学重点:掌握理解圆的周长公式推导过程
教学过程:
A、创设情境·激疑——提出问题
(出示摩托车里程表)(1)师:这里为什么能反映摩托车行的路程呢?
(学生思考后师出示有计数器的跳绳作提示)
(2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。
(3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。
(4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。
(5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?
设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。
B、师生共同提出假设
(1)请学生回忆正方形周长和边长的关系(边长×4)。
(2)师:能不能求圆周长时也找到这样的倍数关系呢?
(3)师:测量的圆的什么比较方便呢?生答:半径、直径
(4)师:请学生先画几条长短不一的线段作直径画圆
(5)师:观察自己画的圆你发现了什么?
学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系
(6)师:你估计周长是直径的几倍?
学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右
(7)师:你有办法验证吗?学生讨论
演示:用绳绕的方法验证(3倍多一点)
设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的'周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。
C、探索问题解决的方法·发现——构建新知
(1)师:你还有别的办法研究圆的周长和直径的关系吗?
(可以用绳绕滚动的办法分别测量一些圆的周长)
(2)学生在小小组内动手操作、测量进行验证
直径(厘米)周长(厘米)周长是直径的几倍
26.23倍多一点
39.13倍多一点
412.93倍多一点
(3)小结
a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)
b、结合圆周率进行爱国主义教育
师生共同推导计算圆的周长公式:(C=лd或C=2лr)
D、运用新知识解决数学问题
(1)学生尝试例题求圆的周长
(2)基本练习(略)
设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。
E、评价体验
(1)师:这节课研究了什么?
生1:周长和直径的关系
生2:圆的周长=直径×圆周率,即C=лd或C=2лd
(2)师:(出示一棵古树图片)你能测量它的直径吗?
生答:砍下来量一量
师问:这个方法简单,你们同意吗?学生思考后回答:
生1:用绳子绕一圈,这就是周长然后用周长除以л就得到直径
生2:在古树中间钻个小孔,量一量
生3:用四个木头搭成一个正方形,边长就是直径
(3)师:你能根据今天所学的知识计算你家到学校大约有多远吗?(用计数器的跳绳作提示)学生讨论后回答:
生1:量一量车轮的直径算出周长,再数数车轮转动了几圈,算一算就行了。(师提醒:那不是最安全)
生2:用根长绳让它跟着轮子转
生3:装一个象跳绳一样的计数器,再算一算。
师:对!摩托车的里程表就是根据这个原理,它就像一个乘法运算机器,车轮的周长是固定的,转数是变动的,从你家到学校的距离之所以能显示在里程表上,就是车轮周长乘以转动的圈数得到的。
设计意图:通过学生动手、动脑、动口,自主地探究知识,发现已知直径(半径)求圆周长的方法,并通过一定的基本训练后学生已经形成了一定技能,如何再让这些数学知识回到生活,让学生感到所学的数学知识有用呢?我设计了测量一棵古树的直径和计算你家到学校大约有多远这样两个问题,为学生提供广阔的讨论空间,因为这些问题就在学生的身边,会让学生感到“有想头”、“有意思”,学生也愿意反复讨论这些问题。这样可以点燃学生的创新意识、创造性思维的火花。
三、实践反思
1、联系学生生活实际,有利于激发学生学习的兴趣。
华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。
2、让学生带着问题去学习,有利于学生主动探索知识
美国数学家哈尔莫斯(mos)有句名言:问题是数学的心脏。我国著名教育家顾明远也说过“不会提问的学生不是好学生”,“学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。
3、提高应用意识,努力体现课堂教学的开放性。
生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈(这些都是学生直接的生活经验),也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。
4、要讨论和研究的问题
(1)在用绳绕的方法验证周长是直径的三倍多一点,有没有必要再让学生去实践,通过计算再验证周长和直径的关系?
(2)如果在发现知识过程中人有一小部分同学得出了方法,教师是想设法再让其他学生继续探究、发现,还是让这些同学代替老师把答案告诉大家呢?
圆的周长教学设计8
【教学目标】
1、让学生明白什么是圆的周长。
2、理解并掌握圆周率的好处和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。
5、透过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作潜力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、激情导入
1、动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一)复习正方形的周长,猜想圆的周长可能和什么有关系。
1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)
4、猜想:你觉得圆的周长可能和什么有关系?
(二)测量验证
1、教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,比较发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三)介绍圆周率
1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的.周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四)推导公式
1、到此刻,你会计算圆的周长吗?怎样算?
2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、明白半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、钟面直径40厘米,钟面的周长是多少厘米?
4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
透过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。
圆的周长教学设计9
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第11——12页“圆的周长”。
【教学目标】
1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。
2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。
3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。
【教学重、难点】
1、探索发现圆的周长与直径的关系;
2、运用圆周长的知识解决一些简单的实际问题。
【教具、学具准备】
1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。
2、课件1:阿凡提与国王比赛A、B。
课件2:圆的周长与直径的商的关系。
课件3:祖冲之有关资料。
【教学设计】
一、创设情境
师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)
50米
师:同学们看,比赛开始了——紧张的比赛结束了。今天的比赛谁获胜了?
生:国王的小花驴获得了胜利
师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?
师:说说你是怎么想的?
生:他们的小毛驴跑的路程不是一样长。
师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?
生:量一量就知道了,师:谁能说说正方形的周长和什么有关系,有怎样的关系?
生:正方形的周长和边长有关系,周长是边长的4倍,师:也就是说只要测出正方形的一条边长就可以知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢?
师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。
得出:围成圆的曲线的长叫圆的周长。
二、自主合作,探究新知
(1)发现测量圆的周长的不同方法
师:下面请同学们把准备的圆拿出来,那“圆的周长指的是哪一部分的长”,同桌互相比画一下。
师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)
师:把你的好方法在小组内交流一下。
(上台交流测量的方法)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。
生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以
2、就可以求出圆的周长。
师板:线绕、滚动、拉直化曲为直
(2)探究发现圆周率和圆的计算公式
师:我们同学真是太棒了,在这么短的时间内找到这么多的.好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?
生:不行,圆太大了,测量不出来!
师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?
生:有些圆的周长没办法用绕线和滚动的方法测量出来
师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?
师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?
生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,师:有道理!那大家来猜一猜,周长和直径有怎样的关系?
生:周长是直径的2倍,生:他们一样长,生:我觉得这个圆的周长是直径的3倍,(4倍)(3。5倍)
师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?
生:动手量一量,算一算,师:说的真好,这可是解决问题的好办法——动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。
3、可以用科学计算器帮忙算一算周长和直径的商。
师:好,现在我们来交流一下你们的实验结果。
生:实物展台交流。
师:大家仔细观察分析,看能发现什么?
圆的周长
(厘米)
圆的直径
(厘米)
周长与直径的商
(保留两位小数)
生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。
生:所有圆的周长都是直径的3倍多一些,师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)
生:圆不论大小,它的周长都是直径的三倍多一些。
师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母∏表示。(板书:圆的周长÷直径=圆周率)
师:关于圆周率,大家都知道什么?你说,生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,师:老师也收集了一些有关的资料,大家想看吗?
看屏幕,这就是祖冲之,(课件介绍祖冲之)
师:我们通过圆的周长除以直径得到了“π”也就是圆周率(板书:C÷d=π)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?
生回答、师板书:C÷d=π→C=πd→C÷π=d
d=2r→C=2πr→C÷2π=r
三、拓展练习,实践应用
(1)计算跑道的周长。
师:(课件显示比赛跑道的有关数据正方形的边长(即圆的直径)50米)现在我们知道了这个圆形跑道的直径,请同学们利用公式快速算一算,这两个跑道的周长是多少?看看国王和阿凡提的比赛到底是不是公平?(学生开始计算,知道比赛不公平)
(2)判断。
(3)巩固练习:
A、1、判断并说明理由:π=3.14()
2、选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确的是:()
a、大圆的圆周率大于小圆的圆周率;
b、大圆的圆周率小于小圆的圆周率;
c、大圆的圆周率等于小圆的圆周率。
B、做P12下面T1:填表
T2:教师指名读题后,可以让学生说一说题中要求的问题实际上是求什么?注意算式与单位。
四、拓展练习课后延伸
师:阿凡提看到同学们帮他解决了这个大难题,非常高兴。可是,可恶的国王阴谋没有得逞,心里很不服气,他又冥思苦想出了个新花招,设计出了新型跑道,要和阿凡提再展开一场比赛
同学们想不想看看新跑道是什么样子
师:(课件出示新跑道)国王看到阿凡提毫不犹豫的答应了,心里真是乐开了花,心想,阿凡提呀,聪明人也有犯糊涂栽跟头的时候,我绕里面的小圈跑8字,不知要比你外面的大圈近多少路程,这个第一肯定是我的了。
师:请同学们课后去研究。
圆的周长教学设计10
教学过程
设计意图
课堂活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
这天,我们还来学习有关圆的知识。老师要先给大家讲一个故事。(边讲述边课件演示)小黄狗和小灰狗比赛跑,两只小狗都从同一点出发,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰狗得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
师:小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
师:那小灰狗所跑的路程呢?(师根据学生的回答板书课题:圆的周长)
师:圆的周长又指的是什么意思?
生:圆一周的长度,叫做圆的周长。(师板书:围成圆的曲线的长)
师:请同学们闭上眼晴:“想像”,圆的周长展开后,会怎样?
生:一条线段。
师:请同学们拿出老师发给你的圆形橡筋,并剪断,看看成什么?
学生齐答:也是一条线段。
3.动手体会:每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
课堂活动二:动手操作,引导探索
(一)讨论圆周长的测量方法
1、讨论方法:下面,老师要请各学习小组利用手中的测量工具,互相合作,动手测量圆的周长。测量完后,相互交流一下,有几种方法?(学生讨论,动手测量)
2、反馈:哪个小组派个代表来说说你们小组是怎样测量出圆的周长?
(学生说出三种方法:绳测法、滚动法、软皮尺测,老师进行演示)
3、小结各种测量方法:(板书)
转化
曲直
4.创设冲突,体会测量的局限性
在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是不是所有的圆都能用这种方法测量出它的周长的?同学们请看(老师甩动绳子系的小球,构成一个圆)小球的运动构成一个圆,又比如(老师演示摩天轮),你能用绳测、滚动的方法直接量出它的周长吗?
这说明用绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。研究圆的周长首先应思考圆周长跟什么有关系。
(二)讨论正方形周长与其边长的关系
要探讨圆的周长到底与什么关系?先探讨正方形周长与其边长的关系
(课件出示一个表格)
正方形
周长
边长
周长:边长
1、
1cm
2、
2cm
3、
3cm
我的发现:正方形的周长与它的边长的比值是()。即正方形的周长是它的边长的()倍。(多媒体显示)。
(三)探讨圆的周长与直径的关系
1、请同学们看屏幕,认真观察比较一下,想一想,圆的周长跟什么有关系?(多媒体教具演示:圆的周长与它的直径长短有关)
提问:你们是怎样看出圆的周长和直径有关系?
小结:圆的直径越长,它的周长就越长。这说明圆的周长和直径有关系。
2、学生测量出圆的周长,并计算周长和直径的比值
圆的周长跟直径有关系。有什么关系呢?圆的周长跟直径是否存在着倍数关系呢?下面我们来做个实验。小组分工合作,用你喜欢的方法测量出圆的周长和直径,并计算出周长和直径的比值,得数保留两位小数,填好报告单,第四栏可用计算器。
《圆的周长》实验报告单
实验目的:找出圆的周长与直径之间的关系。
实验材料:3张圆形纸片、直尺、三角板、棉线、剪刀、计算器。
测量的物品
周长(C)
厘米
直径(d)
厘米
周长与直径的
比值(C/d)
圆形纸片1
圆形纸片2
圆形纸片3
我们的发现:
(学生测量、计算、填表,在展示台出示结果)
请一组同学上台展示表格,师询问:从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
学生汇报结论:这些圆的周长都是直径的3倍多一些。(师板书)
师:那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看屏幕,仔细观察。(多媒体教具演示:圆的周长总是它的直径长度的3倍多一些。)
板书
师根据课件演示介绍圆的周长都是直径的3倍多一些圆周率
课堂活动三:认识圆周率、介绍祖冲之
师:表扬全班同学。圆的周长到底比它的直径的3倍多多少呢?那里,我给同学们讲一个古代数学家祖冲之测量圆周率的故事。
(1)多媒体课件介绍圆周率的知识及祖冲之对圆周率的贡献。早在20xx年前,我国古代数学经典《周髀算经》就指出:“圆经一而周三”的说法,意思是圆的周长是它的直径的3倍,约1500年前,我国伟大的数学和天文家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的`值精确到7位小数的人,比欧洲数学家要早1000年左右.此刻世界上最大的环形山,就是以祖冲之的名字命名的。我们确实就应为前人的聪明、智慧感到自豪和骄傲。之后瑞士的数学家欧拉用希腊字母∏代表圆周率。(板书::∏).圆周率是一个无限不循环小数。在计算时,如果用这个无限小数参加计算是不方便的,故通常将∏取两位小数。(板书π≈3.14)
(2)谈感想,理解误差。
看完这段资料,“读了这则故事,你有何感想?”
生1:我要向祖冲之爷爷一样努力学习,做一个对人类有贡献的人。
生2:我们组刚才测量时不够细心,今后我们要向祖冲之爷爷学习,做一个细心的人。
课堂活动四:总结圆的周长公式
1、刚才我们透过实验可知:圆周率是怎样得出来的呢?
根据小组学生回答教师板书:
圆周率=圆的周长÷直径==π是一个固定的值
2、由此我们可知,如果明白直径如何求周长呢?
教师板书:圆周长=直径×圆周率
如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
教师板书:C=πd
3、圆的周长还能够怎样求?
教师板书:C=2πr
4、圆的周长分别是直径与半径的几倍?
课堂活动五:课堂反馈
一、决定.
1.Π=3.14()
2.圆的周长是它的半径的∏倍。()
3.圆的直径越大,它的圆周率就越大。()
4.只要明白圆的半径或直径,就能够求圆的周长。()
5.大圆的圆周率比小圆的圆周率大。()
三、实践操作
2.电脑课件出示主题图。如果圆形花坛的直径是20米,它的周长是多少米?。(让学生独立完成,群众订正)
问题2:小自行车车轮的直径是50cm,绕花坛一周车轮大约转动多少周?
(学生完成后,让学生打开课本64页例1对照,反思自己的解答过程)
(注:评析问题2时,能够推荐学生用估算来解答。)
3.解答开始的问题
这天我们学习了圆的周长的计算方法,此刻我们来帮忙小黄狗和小灰狗算一下它们跑的路线,看看小灰狗为什么会赢,小黄狗为什么会输。
小黄狗跑的路线是正方形的周长,小灰狗跑的路线是圆的周长,动手算一算,谁跑的距离远?
10米
四、拓展延伸
看,小黄狗和小灰狗又要比赛了,这一次小灰狗沿大圆跑一圈,小黄狗沿两个小圆“∞”跑一圈,谁跑的路程长呢?好好想一想。
课堂活动六:全课总结,反思评价
1、同学们,这天我们一齐研究了圆的周长,下面我们来谈一谈本节的收获。
2、评价自己小组合作学习的表现如何。
课外活动:家庭作业
1、基本练习:完成课本第64页做一做第1、2题。
2、提高练习:完成课本第65页练习十五第2、3题。
3、操作练习:画一个周长是12.56厘米的圆。
板书设计:
利用了生动的课件创设了教学情境,激发了学生参与的兴趣,为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举两得;而且,动画的演示过程,很好地展示了圆周长的概念,并透过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了周长的概念,为后面的学习奠定了基础。
感知动作同人的心理活动是密切联系的,动作记忆保留的时间更长久。小学生在其数学思维活动中,视觉映象起着相当重要的作用,如果透过活动强化问题解决前的感知动作思维,有利使记忆以动作效果来储存。透过让学生把圆形橡筋剪断,使学生感知化曲为直的概念。为下面探索圆的周长做好铺垫。
利用学生好奇、好动的特点,引导学生小组合作,测量归纳出圆的周长的方法,不失时机地表扬小组的合作精神,让学生初步感受到成功的喜悦。
教师抓住时机,甩动绳子系的小球,构成一个圆,演示摩天轮,让学生感受到用绳测、滚动的方法并不能测量出所有圆的周长,就应找到一种既简单有能准确计算圆的周长的方法,进而引导学生研究圆的周长与直径的关系。
透过填写正方形的周长与它的边长的关系,为下面的探讨圆的周长与它的直径的关系做了一个很好的铺垫。因为学生在记忆正方形的周长时,只是记正方形的周长是4个a相加的和,很少说是正方形的周长是边长的4倍。上表的填写对于中下生的小组合作起了一样板的作用。
透过直观的演示学生很快就找到了圆的周长和直径有关系。
《数学课程标准》提出:“动手实践、自主探索、合作交流是学生学习数学的重要方式。”这一环节,引导学生分工合作,用自己喜欢的方法测量出圆的周长,求出比值,对所收集的信息进行分析处理,在动手的过程中发现了圆的周长都是直径的3倍多一些,并透过课件演示验证了结果。使学生在探索新知的过程中,由知识的理解者转变为知识的发现者和创造者,不仅仅理解掌握了知识,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。
那里引出故事,在帮忙学生增长知识的同时,自然在对学生进行了爱国主义教育,使学生产生对数学知识一往情深的志趣。
本环节的设计,实现由具体到抽象,由物化到内化,理解计算公式。透过转化,从而完成新知的生成。
透过辨析让学生巩固圆周率是常数的认识,加深对圆周率的理解。
操作练习设计紧扣课题,从解决基本练习到解决主题图中实际问题,使学生认识到,数学来源于生活,也服务于生活,对新知识有了更深一层的认识,巩固新知,发展了潜力。
透过解答课前导入的问题,让学生体现多层次,多角度的练习,培养了学生的思维和解决问题的潜力,更能促进学生把知识和技能转化为智力、潜力。
在解决了开始的问题后,紧跟着变化题目的图,让学生能感知当大圆的直径等于另外两个小圆的直径和时,大圆的周长等于这两个小圆的周长和。是对圆周长公式的综合应用。
让学生谈收获,能够自我认识、总结课堂的表现与认识掌握程度,最后回忆新知、巩固新知,体验成功的喜悦。
课外作业题目体现层次性,注重基础知识的巩固和基本技能的运用。
围成圆的曲线的长
圆的周长
(实物测量方法)
转化
圆周率
字母表示π≈3.14
曲直
圆的周长总是它的直径的3倍多一些
圆周率=圆的周长÷直径==π是一个固定的值
圆的周长=直径×圆周率
字母表示:C=πd
C=2πr
圆的周长教学设计11
【教学内容】
新课标人教版六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。
2.能利用圆的周长的计算公式解决一些简单的数学问题。
3.培养学生的观察、比较、分析、综合及动手操作能力。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。
难点:理解圆周率的意义。
【教具、学具】
课件、软尺、直尺、绳子、圆形。
【教学过程】
课前交流:请同学们唱一首歌。
(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)
一、创设情景,生成问题
国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。
(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。
(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)
二、探索交流,解决问题。
师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。
师:同桌想一想圆的周长怎样测量?
师:把你的好方法在小组内交流一下。
(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?
(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。
师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。
师演示(线绕圆一周,然后量出线的长度。)
师:还有其他的方法吗?
生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。
师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。
生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。
师:这个办法也很妙!其他同学还有要补充的吗?
生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。
师:你的想法可真不简单!
师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。
师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?
生:能!
师:正方形的周长和什么有关?
生:周长是边长的4倍,师:那么圆的周长和什么有关系呢?
生:圆的直径越长圆越大,所以周长就越长。
师:那周长和直径有怎样的关系呢?
(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)
师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。
师:现在大家通过填写表格发现了什么?
生:在测量中发现,大小不同的圆的周长是不同的。
师:既然不同的圆的.大小是不同的,那么圆的大小是由什么决定的?
生:是由半径(或直径)唯一决定的。
师:圆的周长与直径或半径之间到底存在着怎样的关系?
生:每组算的结果不大一样,但都是3点多。
师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?
生:一样。
师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。
师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?
我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)
师:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
师:从表中我们可以看出圆的周长÷直径=圆周率
(板书:圆的周长=π×直径)。
如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。
生读:c=πd c=2πr
师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?
生:圆的直径或半径。
(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)
三、回顾整理,反思提升。
这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?
(1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。
(2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。
圆的周长教学设计12
教学内容:小学数学实验教材十一册第107~108页“圆的周长”
教学目标:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2、培养学生的观察、比较、分析、综合及动手操作能力;
3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,以及直尺、绸带,测量结果记录表,计算器,投影资料等
教学过程:
一、创设情境,引起猜想:
(一)激发兴趣
播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1、回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2、认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
[评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿
(三)讨论正方形周长与其边长的关系
1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2、怎样才能知道这个正方形的周长?说说你是怎么想的?
3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
[评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。
(四)讨论圆周长的测量方法
1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2、反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3、小结各种测量方法:(板书)转化
曲直
4、创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5、明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
[评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。
(五)合理猜想,强化主体:
1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩
2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4、小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
[评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。
二、实际动手,发现规律:
(一)分组合作测算
1、明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的`关系。
(二)发现规律,初步认识圆周率
1、看了几组同学的测算结果,你有什么发现?
2、虽然倍数不大一样,但周长大多是直径的几倍?
3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3、这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4、理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5、解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1、如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长=直径×圆周率
C=πd
2、如果知道圆的半径,又该怎样计算圆的周长呢
板书:C=2πr
追问:那也就是说,圆的周长总是半径的多少倍
[评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。
三、引导质疑,深入领会(略)
四、巩固练习,形成能力
1、判断并说明理由:π=3。14()
2、选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()
a、大圆的圆周率大于小圆的圆周率;
b、大圆的圆周率小于小圆的圆周率;
c、大圆的圆周率等于小圆的圆周率。
3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
五、课内小结,扎实掌握
通过今天的学习,你有什么收获?
[评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。
六、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
[总评]
纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。
圆的周长教学设计13
教材版本:《义务教育课程标准实验教科书数学》
教学内容:六年级上册第四单元第57页
教材分析:圆的周长是学生在学习直线图形的周长、面积基础上第一次学习曲线图形的周长。教材关于“圆的周长”这一内容,安排在六年级上册第四单元。教材创设了一个“天坛”的简单情景,帮助学生认识圆的周长,并用“绕线”“滚动”等常用方法测量圆的周长,然后安排了探究活动:“圆的周长与什么有关?有什么关系?”通过研究发现圆的周长与直径的关系,从而推导出圆的周长计算公式。
学情分析:学生是学习的主体,是知识建构的主动者。高年级学生能运用已有的知识经验通过顺迁移探索发现新的知识,并运用新知解决实际问题。他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,敢于发表自己的主张和看法。学生在第一学段已经直观的认识了圆,建立了周长的概念,并会求直线段围成的图形的周长,对圆的周长有丰富的感性经验。在此基础上,通过本节课的学习让学生经历圆周率的产生与形成过程,探究发现圆的周长计算公式,并能利用公式解答实际问题。
教学目标:
1、使学生经历圆周率的探究过程,推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学要点分析:
教学重点:学生已经建立了周长的概念,对圆的周长也积累了丰富的感性经验。因此,关于什么是圆的周长,学生比较容易理解。圆作为一种曲线围成的图形与学生头脑中熟悉的直线段围成的图形差别比较大,因此探究圆的周长计算公式是本节课的教学重点。
教学难点:在探究圆的周长计算公式时,最有价值的、最具有思维含量的地方是让学生经历圆周率的产生过程,因此本节课充分放手让学生经历圆周率的探究过程,是本节课的教学难点。
教学过程:
一、开门见山,揭示课题
师:大家请看,这是什么图形?(课件出示课本57页天坛情景图)
生:圆形。
师:我们已经认识了圆,今天这节课我们一起来学习圆的周长。(板书课题:圆的周长)
(评析:学生已储备了较丰富的圆形物体的表象,对周长的概念也较容易理解;再者,本节课学生探究的时间较长,四十分钟的课堂学生要经历前人历尽艰辛推导圆周长计算公式的历程;为保证把过程性目标落实到位,在课的起始阶段,开门见山,迅速集中学生的注意力,把他们的思维带进特定的学习情境中。)
二、探索交流,解决问题
1、圆的周长含义
师:请大家想一想,什么是圆的周长?谁能指着圆说一说。
生:圆一周的长就是圆的周长。
师:(指圆)我们把围成圆的曲线的长叫做圆的周长。
2、自主探究求圆的周长的方法
师:怎样求圆的周长呢?下面我们借助学具圆片来研究。
大家请看,这是一个圆形纸片,你有办法知道它的周长吗?请小组同学商量好方法后,合作求出每个圆片的周长,并把结果记录在表格中。
(小组活动,教师巡视。)
师:哪个小组先来介绍你们的方法?
生1:我们是用绳子绕圆片一周,然后量出绳子的长度,就得到了圆片的周长。
师:还有那个小组也用到了这个方法?
(全体学生都举手)
师:噢,都用到了,看来是个不错的方法。还有不同的方法吗?
生2:我们先在圆片上作个记号,然后把圆片沿着直尺滚动一周,就量出了圆片的周长。
师:这个办法怎么样?
生:很好。
师:同学们都是用测量的方法得到了圆片的周长,归纳起来大家用了两种测量方法,一起来看:
多媒体演示,师生共同描述:可以先在圆片上作个记号,然后把圆片沿直尺滚动一周,就得到了这个圆片的周长。
还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,也就是圆片的周长。
师:这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?
生:直线。
师:是直直的线段。在数学学习中,我们经常会用到转化的方法。(板书:转化)
(评析:根据学生的学习经验和已有的知识,引导学生自主探究方法,合作测量圆的周长,既强化了学生对圆的周长意义的理解,又为后面探索圆周率打下基础。在测量交流的过程中,体会了“化曲为直”的数学思想,经历了用数学思想方法解决数学问题的过程,学生思维能力、动手操作能力和合作意识得到培养。)
师:同学们已经会用测量的方法求圆片的周长,真棒!大家请看,(课件出示)这是北京天坛公园的回音壁(图),它有一道圆形围墙;这是被称为“天津之眼”的.摩天轮(图),它的框架也是圆形的,你能用刚才的方法测量出这些圆的周长吗?
生:不能。
师:为什么呢?
生1:我们没有那么长的绳子,更不可能用滚动的方法。
生2:就算我们有足够长的绳子,可是量起来太困难。
师:看来用测量的方法也能解决,可是太麻烦,那有没有简便的方法呢?
生:计算。
(评析:创设情境,感悟“围”“滚”测量圆的周长的局限性,切实体会计算圆的周长的必要性,使下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。)
3.探究圆的周长计算公式
(1)探究发现圆周率的取值范围
师:怎样计算圆的周长呢?
师:大家回想一下,以前我们学过长方形、正方形的周长计算,计算长方形的周长需要知道它的长和宽,计算正方形的周长需要知道它的边长,那么大家想一想,计算圆的周长需要知道什么呢?也就是说圆的周长和谁有关呢?
生:直径和半径。
师:能说说你的理由吗?
生:因为圆的直径和半径决定圆的大小。
师:我们知道圆的直径和半径越长圆越大,那圆的周长就越长,圆的直径和半径越短圆越小,那圆的周长就越短。看来圆的周长和直径或半径的关系确实很密切,那大家来观察,你认为圆的周长与直径会有怎样的关系呢?
(大多数学生茫然,教师加以引导)
师:我们知道长方形的周长是它长、宽之和的2倍,正方形的周长是边长的4倍,那么圆的周长和直径是怎样的关系呢?
生:倍数关系。
师:请大家观察,你认为圆的周长是直径的几倍?
生:圆的周长是直径的2倍多。
师:能说说你是怎样想的?
师指图继续让生说。
生:直径把圆平均分成了2份,半个圆周的长比直径长,圆的周长是直径的2倍多。
师:通过刚才的交流,我们达成共识,圆的周长一定比直径的2倍多,(板书:2倍多)那会比几倍少呢?或者接近几倍呢?
(评析:借助已有的知识获取新知,是最高的教学技巧所在。当老师提出“怎样计算圆的周长?”这一问题时,学生感到茫然。老师引导学生回忆长、正方形的周长计算,让学生类比猜想并形成了假设:计算圆的周长需要知道什么?周长和直径有什么关系?沟通了知识间的联系,促成了迁移。)
生猜并说理由。
师:看来同学们找不到合理的依据,为了研究方便,老师给每小组提供一个圆形图片,小组同学一起来想一想、画一画、比一比,共同研究这个问题,好吗?
(老师为每组发一张画有一条直径的圆的图片,各小组进行充分的操作研究,老师参与小组活动。)
师:我发现每个小组都有自己的想法了,哪个小组先来说一说?
生1:(拿着自己研究的成果介绍)我们小组又画了一条直径,把圆等分成了四份,发现圆的周长应该是直径的四倍左右。
生2:我们小组在圆的外面画一个正方形,我们发现正方形的边长和圆的直径相等,正方形的周长是直径的4倍,圆的周长比正方形的周长短,所以圆的周长比直径的4倍少。
师:同学们真聪明,知道用以前学过的图形帮助研究新问题。圆的周长比直径的2倍多,4倍少,那你想不想知道更接近几倍呢?
生:想。
师:大家看,刚才这小组把圆等分成四份,发现圆的周长是直径的4倍左右,我们借助这种思路,再继续等分下去看能发现什么?大家看(多媒体演示:把圆等分六份)现在把圆等分成了几份?
生:六份
师:圆周角平均分成了6份,那这一个角是多少度呢?
生:60度。
师:这一个三角形是什么三角形?(课件闪烁一个三角形)
生:等边三角形。
师:那么这一条边就等于圆的半径,这一段弧和这一条边比,谁长?(课件闪烁一段弧和对应的一条边)
生:弧长。
师:也就说这一段弧比圆半径长,那圆的周长比圆半径的几倍多?
,《圆的周长》教学实录与评析
生:6倍多。
师:比圆直径的几倍多?
生:3倍多。
师:圆的周长比直径的3倍多一些,到底是几倍呢?有什么办法知道?
生:我们可以量出圆的周长和直径,用周长除以直径,算一算。
(评析:使学生经历知识的产生与形成的过程非常重要,以上外切正方形、分割圆等方法正是阿基米德、刘徽等数学家研究圆周率时所使用的,学生萌生并运用这些方法进行研究,正是我们所追求的“大数学观”。在提出问题—形成假设—猜想推理—形成结论的过程中,学生对知识的理解更加透彻,情感、态度、价值观的培养更加有效。借助课件演示,使学生感受到了极限思想。)
(2)计算圆周率的近似值
师:刚才每个小组已经测量出几个圆片的周长,下面请各小组再拿出表格,找到每个圆的直径,填在第三栏,并用计算器算出周长除以直径的商,把结果记录在表格第四栏中,除不尽的得数保留两位小数。
(小组活动,教师巡视。)
(各小组完成后,老师把各组的表格依次放在展台上。)
师:我们测量的圆的直径都不一样,周长也不一样,请同学们来观察这些周长除以直径的商,你又有什么发现?
生:都比3大。
生:圆的周长除以直径的商都是3点几。
生:都在3.2左右。(板书:3.2倍左右)
师:也就是说圆的周长总是直径的3倍多一些,这也证明我们刚才推理的结果是正确的,其实,在古今中外,有许多数学家研究过这个问题,他们经过大量的实验,已经证明圆的周长除以直径的商是一个固定的无限不循环小数,它是3.1415926……,我们把它叫做圆周率,(板书:圆周率)用一个希腊字母π来表示。(板书:π)。
师:一起读。(板书pài)
师:我们看,刚才同学们计算的圆的周长除以直径的商为什么都不是固定的数呢?
生:测量不准确,有误差。
师:很会分析问题。我们计算的商都不一样,是因为测量有误差造成的。只要测量方法正确,测量过程仔细,是可以减小误差的。
(3)介绍圆周率的历史
师:有关圆周率的历史,你想了解一下吗?
(多媒体演示,教师介绍。)
师:在我国,有关圆周率的最早记载是20xx多年前的周髀算经,当时的解决方案是测量,人们发现圆的周长总是直径的3倍多。和我们刚才测量计算的结果是一样的。
魏晋时期伟大的数学家刘徽首先采用“割圆术”得出了较精确的圆周率的值。我们刚才把圆周等分成了2份,发现圆的周长是直径的2倍多,等分成4份,发现周长是直径的4倍左右,等分成6份,发现周长比直径的3倍多一些,刘徽一直把圆等分成192份,得到了圆周率的近似值3.14。
继刘徽之后,我国南北朝时期有一位伟大的数学家和天文学家,他继续研究圆周率,并做出了杰出的贡献,你知道他是谁吗?
生:祖冲之。
师:对,祖冲之。他计算出π的值在3.1415926和3.1415927之间,是世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。你有什么感想?
生:祖冲之很伟大。
师:是啊,我们确实该为我们的祖先能有这样的伟大成就感到骄傲和自豪。
师:虽然如此,人们对圆周率的研究远没有结束。随着数学技术的发展,现在人们已经用计算机将圆周率计算到小数点后12411亿位。
师:有关圆周率的历史资料还有很多,有兴趣的同学课下继续搜集、查阅。
(评析:让学生了解自古以来人类对圆周率的研究历程,领略与计算圆周率有关的方法,从而了解数学的悠久历史和人类对数学知识的不断探索过程,感受数学的魅力,激发研究数学的兴趣。同时,结合刘徽、祖冲之研究圆周率取得的伟大成就,激发学生的民族自豪感。)
(4)推导圆周长的计算公式
师:现在我们知道了圆的周长总是直径的π倍。π是一个固定的数,知道了直径,怎样计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书:C=πd)
师:知道了圆的直径,你会计算圆的周长,知道了圆的半径,怎样计算圆的周长?
(板书:C=2πr)
师:要计算圆的周长,只要知道什么就可以了?
生:直径或半径。
师:由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:3.14)
(评析:通过前面的探究,学生明确了圆的周长与直径的关系,进而引导学生推导圆的周长计算公式,水到渠成,深化了学生的思维。)
三、实践应用,内化提高
师:现在老师告诉你天坛回音壁的圆形围墙的直径是65米,这个摩天轮的圆形框架的半径是55米,现在你能求出它们的周长吗?
(学生独立尝试,教师巡视。)
师:谁来介绍你的计算方法?
生读题,集体订正。
(评析:利用探究得出的公式解决前面提出的实际问题,使学生体会到计算公式的简洁、实用,培养了学生解决问题的能力。)
四、回顾整理,反思提升
师:今天这节课你有什么收获?
生1:我学会了计算圆的周长。
生2:我了解了圆周率的历史。
师:这些都是大家知识上的收获,我们在获取这些知识时,通过观察圆的图形,做辅助线、等分圆等方法,首先确定了圆周率的取值范围,又通过测量计算找到了圆周率的近似值,我们还自己推导出了圆周长的计算公式,同学们真是太棒了。
(评析:数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后,不仅引导学生回顾了本节课学到的知识,还与学生一起回顾了解决问题的策略、方法,并对学生所做出的成绩给予情感上的激励。)
创新特色:
1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。
数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。
2、促进知识的迁移
“为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。
3、把数学教学看作一个整体。
本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。
3、充实、完善了教学目标。
把数学看作大数学,本节课的教学,学生不是在别人提示下通过测量计算得到的圆周率,而是引导学生借助已有的知识经验,调动学生的智慧,使学生经历前人研究圆周率的过程、所运用的方法,培养了学生的研究意识、探究能力以及数学学习的情感,而这一切,比单纯获得一个公式更为重要。因此本节课的教学目标中我们增加了“使学生经历圆周率的产生与形成过程”这一重要内容。
圆的周长教学设计14
教学内容:新课标人教版小学数学六年级上册第四单元p62----64页
学习目标:
知识与技能: 理解圆周率的意义,掌握圆的周长的计算公式。
过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育
其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。
教学重难点和关键:
重点:推导圆周长的计算方法。
难点:学生以合作实践,讨论交流的方式探究圆周率的含义。
关键:理解圆的周长与直径的关系。
教学具的准备:
多媒体课件,模型圆,几个直径不同的圆形,线、直尺等。
教学过程:
(一)复习铺垫
出示课件(广场,找学过的平面图形)为理解圆周长的含义做好铺垫。
(二)教学新知
1.在情境中内化概念
(1)由情境图,(课件出示广场图从中找学过的平面图引入新课。生,找出了圆。师,如果沿圆形喷水池走一周的长度,实际就是求圆的什么呢?生:周长。师:上节课大家对圆,有了很多的了解,今天我们继续探究有关圆的知识。)(板书:圆的周长通常用字母C)
同学心里已经知道圆的周长指的那部分,那你们拿出自己的圆片,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?
师生共同小结:围成圆的曲线的长是圆的周长。
既然圆的周长是曲线那能不能用直尺直接测量呢?
2、测量圆的周长
(1)、这条曲线的长度你有没有办法测出它的长度呢?(让学生独立思考10秒左右)
(2)、然后四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)
(3)、小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(用滚动、绕绳的方法)。(结合学生的方法配以课件演示)
课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)
(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。
(4)、今天老师也带来了圆,想请一位同学上来测量一下,谁愿意?
(5)、演示:转动的风车,形成圆形,问:你怎么不量呢?(这个圆会动,很难测量……如果把地球近似地看成一个球,绕赤道一周的长度是多少,这一周的长度你能测量出来吗?
(6)、小结:看来象这样动态的圆或很大的圆测量其周长确实存在很大的困难,这就需要我们探究出一种像长,正方形周长的计算公式一样普遍使用的方法来解决圆周长的问题。
3.在探究中理解公式(探究圆周长的规律)
(1)设疑激思
同学们想一想正方形的周长和什么有关系?(边长)哪圆的周长又与什么有关呢?( 到底是不是这样呢?我们来看一个实验。)(出示课件 电脑演示:从小到大依次出示2个虚圆)看来圆的周长的确与它的半径有关,与半径有关也就与直径有关,到底有什么样的关系这个问题要同学们自己去发现,请同学们用我们上面的滚动法或绳测法测量手中圆的周长,并算出周长和直径的比值填如下表.)
测量对象
圆的周长(厘米)
圆的直径(厘米)
周长÷直径=
交流实验报告单,得出结论。
师:哪个小组愿意把你们组填写的表汇报一下。(生报数师填表)从他们汇报的数据,同学们发现了什么吗?
生:直径与周长的比值是三点多。
师:其他小组有不同意见或补充吗?
生;虽然圆的大小不一样,但我们算得周长也是直径的3倍多一些。
师:凡是通过测量计算发现你的`圆周长是直径的3倍多一些的同学请举手。
师:这说明圆的周长除以直径的商是有规律的。在我们所测量的这些圆中,每个圆的周长都是直径的3倍多一些!如果再换成其他的圆是不是也有这样的规律?请同学们看电脑演示。
通过观察的确是这样,师:同学们真了不起,刚才,同学们测量了大小不同的圆,但却有相同的发现。(圆的周长是它直径的三倍多一些) (板书:圆的周长总是它的直径的3倍多一些。)
(2)认识圆周率
①、实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。
②、听了这个故事,你有哪些感受?(我自豪,我骄傲。太了不起了,)师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。
③、师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。
“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。
根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)
③ 、同学们通过自己的努力得出了求圆周长的公式,要求圆的周长,需要知道什么条件?(直径)
做一做 同学们现在我们能不能解决转动的风车,形成的圆的周长的问题?如果老师告诉你风车的半径是10厘米,你能算出周长吗?
老师给同学们带来了一个圆桌,它的直径是0.95米,你会算它的周长吗?(例1)
做一做.一辆自行车的车轮半径是0.33米.车轮滚动一周自行车前进多少米?(得数保留两位小数)
(三)巩固练习
1.计算下面各圆的周长。
d=2米 r=6分米 d=1.5厘米 r=1.5厘米
2.判断题
(1)π=3.14 ( )
(2)大圆的圆周率比小圆的圆周率大 ( )
(3)直接是2厘米的圆的周长是 ( )
3.14×2=6.28米
(4)半径3米的圆的周长是
3.14×3=9.42米
3.知识的拓展应用
计算广场圆形喷水池的周长。(计算两个圆的周长,环形,小圆的直径是40米,环宽5米)
(四)评价小结
通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?
师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!
圆的周长教学设计15
教学内容:圆的周长
教学重点:理解圆周率的意义。
教学难点:探究圆的周长的计算方法。
教学过程:
一、导入新课
故事导入,观看后提问:
1.谁获胜呢?
2.它们对自己跑的距离产生了怀疑,都说自己跑的远……
3.拿起一个圆用手模一摸感知什么是圆的周长。
二、新课
(一)介绍测量方法:
1.绳测法。
2.滚动法。
3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性
(二)猜想。(三)实验。
1.小组协作。
周长c(厘米)
直径d(厘米)
周长与直径的比值(保留两位小数)
……
……
……
2.汇报测量和计算结果。
提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?
学生:发现每个圆的周长总是直径的3倍多一些。
(四)验证结论。
(五)阅读理解有关圆周率的知识。
三、练习
计算方法:
1.能说出圆周长的计算方法吗?
c=∏d c=2∏r(板书)
2.根据条件,求下面各圆的周长。
d=10cm r=10cm
3.(略)
4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?
5.拓展练习。
四、总结。
你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。
附:教学设想
一、选择与新知识最佳关系的生长点,巧制课件,导入新课。
“周长”是已学过的概念,但以前讲的长、正方形的周长是指封闭折线的长度,而圆的周长是指封闭曲线的长度。一“直”一“曲”既有联系亦有区别。我抓住这一新知识的连接点导入新课。激发学生的求知欲。
二、调动学生积极主动参与,给学生充分的探索空间。
整个教学过程中,我设计灵活多样的教学方法。例:课件演示与实验相结合,个别实验和小组实验相结合,讲与练相结合,计算与测量相结合,谈话与板书相结合,讲与练相结合,计算与测量相结合。充分调动学生学习的主动性,给学生充分的探索时空,并且探究的题材对学生也具有一定的挑战性。学生的角色由知识的接受者转变为知识的构建者。
三、在研究性学习中培养学生合作意识和数学交流能力。
小组探索通过测、剪、量、算一系列操作认识圆的周长与直径有一定的倍数关系,巧用课件,概括出圆周长的计算公式。
附:教后感:
这次“三新一整合”的活动促使我重温《新教材标准》,改进自己教学观念,学习有关信息技术整合的新模式。本节课体现了我教学观念的一些改变。主要体现在:
一、把课堂的主动权交给了学生,给学生充分的探索时空。
课堂教学是“教”与“学”的统一,随着素质教育的不断深化,越来越偏重于“学”的研究(三新活动中的“新学法”)。教师不再是知识的提供者和传授者,而是数学学习的组织者、引导者、参与者;学生不再是知识的接受者,而是数学知识的`建构者。师生角色的的变化,使学生在学习方式上有了质的飞跃。动手实践,自主探索、合作交流成为学生重要的学习方式。圆的周长计算方法的探索,这题材对学生有一定的挑战性,也就是和学生的现有认知状态有一个适度距离(潜在距离),学生在这种状态下的探究学习才是有意义的学习。本节课给予学生充分的时间探索出圆的周长总是直径的3倍多一些。
二、利用课件,激发探究兴趣、提高探究效率和培养探究能力。
课件动感的龟兔赛跑把全体学生引入课堂,理解了课题的含义、明确了学习的目的性,激发了探索的兴趣。课件的几次龟兔赛跑的介入,并逐级演示,再加上老师的启发引导和学生的观察思考有机结合,化抽象为具体,使学生进一步理解了圆周长的含义,明确学习目的性,激发了学生的探究兴趣。
运用课件设计自学内容,大大节省了板书所用的时间,使学生探究数学问题的效率得以提高。正方形周长和圆周长比较,大圆周长和几个内切小圆的周长和比较。通过课件的演示,对于引导学生说理,理解疑难问题,培养学生解决新问题的探究能力有着极为重要的作用。
三、巧妙设计练习,照顾全体,培养学生的创造能力。
本节课的练习全部是要利用课堂所学的内容解决生活中的问题。特别是通过小组学习形式让学生利用圆周长的知识举出能解决生活中哪些有关圆周长的知识这一开放性题型。激发了学生的兴趣,也照顾了不同层面的学生。学生所举的例子充分体现了学生的创造性和运用知识的能力。
运用了探究式课堂教学。上课后,也有许多地方值得我进一步深思。例如怎样设问、问题开放到什么程度、信息技术怎样完美地和课堂整合、教学理念的进一步改变……
探究式课堂是否取得实效,归根到底是以学生是否参与、怎样参与、参与多少来决定的同时只有让学生主动参与教学,才能让课堂充满生机。
附:评析意见:
对于刘老师上的《圆的周长》一节课,我们可以用九个字来概括,“观念新,意识强,效果好”。从教学设计中和教学过程中,我们深切地感受到刘老师的教学理念很先进,对“新课程标准中的数学学习和数学教学”有深刻的认识,也体现出较好的效果。
一、教学观念上,刘老师的“个性教育意识”强
刘老师的“个性教育意识”强,可以从刘老师的课堂设计、课堂结构上都可以体现出来。课堂上学生的学习过程都是以小组的形式来开展的,学生之间通过协作、交流来共同实现学习目标。这种组织形式就能保证了每一个学生都能得到许多的学习机会,在这样的学习环境中,人人都能得到发展,不同的人得到了不同的发展。
二、教学关系上,刘老师的“学生的主体意识”强
刘老师的“学生的主体意识”强,这一点不仅可以从教师的角色的转变中可以看出来,还可以从教学时间的分配上得到体现。首先教师的角色在课堂上有很大的变化。教师不再一个人主导课堂,她把教学主阵地让位给学生,从而使学生真正成为学习的主体。在课堂上,老师是不仅一个引导者,通过“龟兔赛跑”的故事,配合课件动画的演示,一下子就把学生带到探究问题的学习环境之中来。老师还是一个组织者,给学生分工,给学生目标和任务,其余工作都让学生自己去完成。学生都很好地利用这些时间和空间,动手操作,通过操作去探究和发现圆的周长和直径的关系。老师不只是注重结论的学习,更是让学生去经历学习活动的全过程,从而使学生体验到探究问题的乐趣。老师更是一位与学生平等的合作者,老师适时的点拨与启发“正方形的周长与边长有关,大胆地让学生猜一猜圆的周长与什么有关”。再如,老师艺术地把自己的测量结果与学生平等地呈现在一起,没有一点强加给学生的味道。另外,为了真正体现以学生为主体,而不流于形式。刘老师给学生提供充分的学习时间和空间,如探究和发现圆的周长与直径的关系,学生用了12分钟。这就保证学生有充分的时间参与学习活动,尽可能地让全体学生参与学习活动,使学生人人动脑、动口、动手,从而真正确立学生学习的主体地位,还学生学习的主人地位。
三、教学模式上,刘老师的“创新意识”强
在教学活动中,刘老师很注重学生创造力的培养。其中练习的设计很有新意,对培养学生的创造力起着很大的作用。小组之间互相提出问题,或独立解答,或讨论交流。从学生提出的问题我们可以感觉到学生的创造力很强。如有的提钟的时针转一圈的长度、单车的车轮的周长、呼啦圈的周长等,还有地球的周长,大树干的周长等。这些问题都是我们生活当中所常见的现象。学生就可以利用今天所掌握的知识去解决这些问题。学生的收获真的很大。从而让学生体会到什么是有价值的数学,生活当中的数学就是有价值的数学,有趣的数学,有利于学生发展的数学就是有价值的数学。
四、建议
课件整合方面,为了让学生从更深层次上接触科学的真理,培养科学的态度和科学精神。可以在学生操作得到圆的周长是直径的3倍多一些的关系以后,设计一个较精确的计算圆周率的课件,让学生对圆周率有一个更加清楚的认识。
圆的周长教学设计16
【教学资料】
圆周长计算公式的推导,周长计算。(人教版《义务教育课程标准实验教科书·数学》六年级第62~64页的教学资料。)
【教学目标】
1.理解圆周率的好处,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作潜力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
【教学重点与难点】
重点:圆的周长计算公式的推导,能利用公式正确计算圆的周长。
难点:深入理解圆周率的好处。
【教材分析】
“圆的周长”概念的教学,是以长方形,正方形周长知识为认知基础的,是前面学习“圆的认识”的深化,“圆的周长”计算方法的教学,是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要资料。
【学情分析】
学生在学习圆的周长前已经理解了周长的好处,掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,明白半径,直径的关系并且会画圆,能测量出圆的直径。这节课是在这样的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。同时学生对各项动手操作的实践活动十分感兴趣,并且本班大部分学生思维活跃,善于动脑思考,有必须的自主学习潜力,相互探讨学习的风气较浓,对新事物比较感兴趣,平时教学中,经常开展小组合作式的探究学习活动,学生有较强的合作意识。老师只要充分发挥、调动他们的积极性,他们是乐意做课堂的主人的!
【教学用具准备】
教师准备:PPT课件、细绳、直尺、绳子系的小球。
学生准备:圆形物品、圆形橡筋、直径为2、3、5厘米的圆形纸片、直尺、三角板、棉线、软皮尺、剪刀、实验报告单、计算器。
【设计理念】
我们的课堂是生活的课堂,生命的课堂。但是,在现实的课堂中“为讨论而讨论”、“为合作而合作”、“为活动而活动”等华而不实虚有其表的教学现象频频出现。细细反思,教学观念与教学行为之间的距离主要涉及到课堂教学的有效性问题。如我在本课设计上力求为学生创设“探究──发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华,从而使小组交流、师生交流、生生交流得以有效进行。我在教学中采取的策略如下:
1、利用现代教育技术,发挥强大的演示作用。
《圆的周长》从激趣引入、演示操作、指导探究、练习的出示都充分应用现代教育技术将文字、图形、动画、声音等多种信息加工组成在一齐来呈现知识信息的特点,使学生在学习的过程中,充分调动他们的感官,激发他们的学习兴趣,调动他们学习的积极性,同时把知识的构成过程有效的呈现给学生。
2、在操作中感悟。
教学过程是教师引导学生把人类的知识成果转为个体认识的过程,是一处“再创造”的过程。在这个过程中,实践操作是最基本、最重要的手段和方法之一。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的.直径的关系”。
3、在探究中发现与拓展。
儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,透过测量圆的周长、探讨圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。
总之,课堂应是师生互动、心灵对话的舞台;课堂应是师生共同创造奇迹、唤醒各自沉睡的潜能的时空;课堂应是向在场的每一颗心灵都敞开温情双手的怀抱,平等、民主、安全、愉悦是她最显眼的标志。
【设计思路】
从本课教学资料整体看,我的设计思路是下面的图:
圆周长认识
圆周长获取
测量
圆周率
圆周长应用
公式
计算
圆的周长教学设计17
【微课简介】
《圆的周长公式推导》一课是小学数学新人教版六年级上册的一个知识点,适用于对圆的各部分名称已有初步认识并将学习计算圆的周长公式的学生学习。在这个知识点学习中,学生应用互动软件《圆的工具》辅助学习,通过小组合作的探究活动,对比、分析、概括出圆的周长与直径、半径的关系,推导出圆的周长公式。
【教学背景】
数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”的教学理念。而现代化技术的运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的`环境,提高了学习效率,获得较好的教学效果。
【教材分析】
圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。
【学情分析】
本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。
【教学目标】
推导并总结出圆周长的计算公式。
【教学重难点】
推导出圆周长的计算公式。
【教学方法】
以引导探究为主的探究法。
【学习环境与资源】
1、学生分组,每一组至少有一台联网的计算机。
2、探究工具软件《圆的工具》
3、学生探究活动纸
【教学过程】
这一环节主要是进行实验探究,构建模型。
一、出示实验任务,提出实验要求。
1、把用来记录探究数据的学生活动纸分发给学生。
2、介绍实验软件:圆的工具
3、出示探究活动一的任务:
二、学生应用软件开展数学实验
1、同桌合作,轮流进行操作和记录;
【软件使用说明】
2、四人小组进一步协作整理数据,发现规律;
学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。
当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的关系,如何用半径算出圆的周长?”
这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。
3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。
三、建构数学模型
1、通过实验和交流,发现圆的周长和直径的倍数关系,能用直径或半径计算圆的周长。
2、学会按顺利整理数据的实验方法。
【教学总结】
圆的周长公式推导过程在教学中一直是个难点,以往都是让学生拿着圆形物体进行直径、周长的测量,从数据中去寻找周长与直径的关系。这样的操作过程既耗时又费力,且容易出现测量误差导致计算结果出现较大的差距等情况。因此,在设计这节课的时候,我采用了计算机软件的模拟操作,使得整个操作过程的数据精确化,学生借助计算机操作获得的一系列数据,既能获得活动探究所需的数据,又能节约很多操作时间,从而使得整节课的重心放在数据搜集、整理和分析上,学生在一系列精确的数据中获得感知,从而顺利推导出圆的周长公式,实现高效课堂的教学目的。
圆的周长教学设计18
一、教学目标
(一)知识与技能
理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。
(二)过程与方法
经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。
(三)情感态度和价值观
通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
二、教学重难点
教学重点:理解和掌握圆的周长的计算方法。
教学难点:圆周率的探究。
三、教学准备
多媒体课件。
四、教学过程
(一)创设情境,引发思考
1.情境导入,揭示课题。
教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)
学生:给它加一个箍。
教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?
教师:求铁皮的长度,就是求圆的什么?
学生:求铁皮的长度,也就是求圆的周长。
教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)
学生:圆一周的长度叫圆的周长。
教师:圆的周长与我们之前学习过的图形的周长有什么区别?
学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。
2.合理猜想,确定方向。
教师:圆的周长与圆的什么有关?
学生:直径、半径。
教师:圆的周长是直径的几倍?
学生:……
教师:怎么验证你的'猜测呢?
学生:量一量,算一算。
【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。
(二)设计方案,展开探究
1.探讨设计方案。
(1)如何化曲为直?
教师:圆是曲线图形,尺子是直的,怎么办?
学生:滚一滚,绕一绕……
(2)如何减少误差?
教师:测量结果可能不准确,有什么办法尽量准确一点呢?
学生1:多量几次,选出现次数量多的数据。
学生2:用计算器计算,提高正确率。
教师:除不尽怎么办?
学生1:用分数表示。
学生2:取近似数。
教师:一般保留两位小数,比较方便。
【设计意图】圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。
2.操作获取数据。
小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。
物品名称
周长
直径
周长与直径的比值
(三)交流讨论,提升认识
1.交流质疑。
(1)小组汇报,教师直接将结果输入电脑。
【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。
(2)质疑不同数据。
教师:为什么测量计算的结果不相同?
学生1:测量有误差,绳子绕的松紧程度不同。
学生2:尺子不够精确,不到一毫米只能估计。
教师:是不是尺子再精确一点,测量结果就准确无误?
教师:有没有其他的方法?
教师:有没有唯一的得数?
【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。
2.概括小结。
(1)圆周率的意义及读写。(课件出示内容。)
任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.1415926535……但在实际应用中常常只取它的近似值,例如≈3.14。
(2)概括周长计算公式。
如果用C表示圆的周长,就有C=d或C=2r。
(四)联系实际,解决问题
1.例题教学。
(1)出示教材第64页例1。
一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?
(2)学生尝试解答。
(3)规范书写。
C=2r
2×3.14×33=207.24(cm)≈2(m)
1000÷2=500(圈)
答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。
2.巩固练习。
(1)求下面各圆的周长。
①2×3.14×3=18.84(cm);
②3.14×6=18.84(cm);
③2×3.14×5=31.4(cm)。
(2)解决问题。
①一个圆形喷水池的半径是5 m,它的周长是多少米?
2×3.14×5=31.4(米)
答:它的周长是31.4米。
②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)
3.77÷3.14≈1.2(米)
答:这个圆柱的直径大约是1.2米。
【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。
(五)课堂小结,拓展延伸
1.这节课你有什么收获?说一说圆的周长与直径的关系。
2.介绍中国古代对圆周率的研究及伟大成就。
【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。
【圆的周长教学设计】相关文章:
《圆的周长》教学设计06-21
圆的周长教学设计01-25
《圆的周长》教学设计10-22
圆的周长教学设计05-29
圆的周长教学设计15篇【经典】09-05
圆的周长教学设计15篇[集合]08-30
圆的周长教学设计实用15篇11-06
《圆的周长》教学设计15篇(优秀)11-14
圆的周长教学设计【范例15篇】09-11