正反比例教学设计
作为一名教学工作者,总归要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家整理的正反比例教学设计,仅供参考,欢迎大家阅读。
正反比例教学设计1
教学内容:
北师大版六年级下册第二单元第一课时教学目标:
1、知识技能目标:
⑴通过比较,进一步加深理解正比例和反比例的意义和特点,体会它们的联系与区别;
⑵掌握正比例和反比例的变化规律;
⑶在练习中进一步提高分析、比较、抽象、概括等能力。
2、过程性目标:
⑴在交流讨论中完善自己判断正、反比例关系的经验认识,掌握判断正、反比例关系的方法,形成接近自动化技能的判断策略;
⑵通过数“形”结合,进一步感受和领会正、反比例关系的变化规律及特点,进一步渗透函数思想,为今后中学的学习打下基础。
3、情感态度目标:
⑴体会借助图像对事物发展方向推断的作用,逐步养成用数学的眼光来分析问题的习惯;
⑵逐步增强数学学习的自信心,体验当独立思考解决不了问题时,与他人合作的成就感,逐步增强团队精神。
教学过程:
一、复习导入
1、揭示课题
师:老师知道同学们前两天已经学习了正比例和反比例意义。
谁来说一说正比例和反比例的意义。(板书:正比例和反比例)
2、出示练习九第1题
师:我们来用正比例和反比例的意义判断几道题?说说你的理由。
二、教学新课
1、教学例7
⑴出示例7两个表,学生自学,并回答相关问题。
师:为什么左表相关联的两种量成正比例关系?为什么右表相关联的两种量成反比例关系?
⑵小结。
⑶师:我们已经知道,路程、速度和时间这三个量存在相依关系,根据这两个表我们可以用什么样的关系式来表示它们之间的相依关系呢?(根据学生的回答板书)
⑷师:在这里,当速度一定时,路程和时间成什么比例关系?为什么?
当路程一定时,速度和时间成什么比例关系?为什么?
请你推想一下,如果当时间一定时,路程和速度成什么比例关系呢?为什么?
你能用关系式来表示吗?(根据学生的回答板书)
⑸小结。
⑹练习
①做“练一练”第1题
师:你能用关系式来表示这题里三个量之间的相依关系吗?
(根据学生的回答出示关系式)
②做“练一练”第2题
师:你能分别用数量关系式来表示吗?(根据学生的回答出示关系式)
⑺小结。
⑻总结判断策略
①师:同学们,学到这儿相信大家已经有了不少判断两种量是不是成比例的经验了,接下来请你们在小组里交流一下自己的经验,再听听别人的经验好吗?②小组活动讨论交流
③各小组汇报交流结果
④根据学生的回答板书
⑤师:谁能再来说一说判断两种量是不是成比例时怎么办?
⑥小结:当我们判断两种相关联的量是成正比例还是成反比例的时候关键是看?
⑼练习
①做练习九第2题
师:你是怎样判断的?
②出示练习九第7题
2、用图表示例7中两种量的关系
⑴出示例7的.两个表
师:两种量成正比例关系和反比例关系的变化规律,也可以用图来表示。我们先来研究怎样将正比例关系用图来表示。
⑵出示空图,引领学生识图
⑶根据表里的数据描点
⑷出示空图,引领学生识图
师:我们再来研究怎样将反比例关系用图来表示。
⑸根据表里的数据描点
⑹正、反比例图比较
师:用图来表示正、反比例,你看了有什么感觉?
⑺练习:做练习九第8题
3、总结正、反比例的特点
师:通过我们这堂课的研究和学习,你们说说成正比例关系和成反比例关系的相同点和不同点吗?
⑴小组讨论交流
⑵汇报交流结果,完成表格。
三、课堂小结
师:今天我们不仅进一步认识了正比例和反比例的意义,还对它们进行了比较,(补充完整课题:的比较)通过今天的学习,你学到了什么?你觉得怎样判断两种量是否成比例?判断相关联的两种量成正比例还是反比例的关键是什么?
正反比例教学设计2
教学目的:
1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。
2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。
教学过程:
我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。
一、检测题
1.什么叫成正比例的量?它的关系式是什么?
2.什么叫成反比例的量?它的关系式是什么?
3.判断下面两种量成不成比例?成什么比例?
a.订阅《中国少年报》的份数和钱数。
b.日产量一定,天数和总产量。
c.路程一定,速度和时间。
d.圆的周长和半径。
e.长方形的周长一定,长和宽。
f.圆锥的体积一定,底面积和高。
大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的'量。大家一定要把握概念的实质,灵活运用。
二、练一练
1.计算下列各题:
农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)
师:这道题用比例方法来解答请同学们自己做一做。(一人板演)
订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=X/30。
师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?
生:如果再生产27天,一共可生产多少台?
师:同原题比较,这道题复杂在哪呢?
生:原题的条件是直接的,这题的条件是间接的。
生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。
师:这道题怎样解答呢?(要求学生口头列出比例式)
生:解:设一共可生产X台,360/3=X/(3+27)(板书:360/3=X/(3+27))。
教师提问:3+27求的是什么?把3+27写成27可以吗?
教师强调:列式时一定要找准相关联的量中相对应的数。
师;这道题还可以怎样解答?
生:解:设27天可生产X台,360/3=X/27X+360。(板书:360/3=X/27X+360)。
教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为X,列出这样的比例式(指360/3=X/(3+27))。也可以间接设27天的生产量为X,求出27天的生产量再加上前3天的生产量,就得到了一共的生产量。
解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。
a.农具厂生产一批农具,原计划每天生产80台,20天完成任务。如果每天生产100台,需多少天完成?
师:这道题用比例方法来解答请同学们自己做一做。(一人板演)
教师订正时请同学讲述解题思路,并板书方程:100X=80*20。
将原题变成:
b.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天多生产20台,需多少天能完成任务?
c.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产25%,需多少天能完成任务?
d.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天生产100台,可提前几天完成任务?
e.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产20台,可提前几天完成任务?
以上4题要求学生独立完成。
教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数X对应值的复杂化。二是问题发生变化,引起未知数X的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。
三、巩固练习
1.学校买来塑料绳150米,先剪下12米做了4根跳绳。照这样计算,剩下的塑料绳可以做这样的跳绳多少根?(用算术和比例两种方法)
2.利民加工厂生产一批零件,原计划每天生产25个,30天可以完成。实际每天多生产5个,这样可提前几天完成?
3.根据题中所给的条件,你能提出什么问题?并列出比例式。
一个农具厂,计划一个月(30天)生产农具600台,结果4天生产了100台,照这样计算,?
小结:刚才这道题同学们所提的问题有:
(1)完成计划需要多少天?
(2)余下的任务还需要几天?
(3)可比计划提前几天完成?
(4)全月实际可生产多少台?
(5)实际超过计划多少台?虽然不同,但因题中的基本数量关系未变,所以我们都是用正比例的方法来解答的。
4.用正、反比例两种方法解答下题。
修一条公路,原计划每天修300米,60天修完。实际3天就修了120米,照这样计算,实际用几天修完?
教师小结:我们分析问题的角度不同,解题的思路也就不同。刚才这道题,从“照这样计算”可知每天修路的米数是不变的,可用正比例的方法来解答。从“修一条公路”又可知这条路的长度是不变的。又可用反比例的方法来解答。
四、全课小结
解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量
等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。
正反比例教学设计3
教学内容:
六年级下册总复习83—85页《正比例、反比例》。
教学目标:
(一)知识目标:
(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。
(2)通过具体问题的认识进一步认识正比例、反比例的量。
(二)数学思考与解决问题
通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。
(三)情感态度
培养学生认真思考的习惯,学会区分正反比例。教学重、难点:
(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。
(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。
教法学法:
自主复习、小组交流、全班交流、互帮互学
教学准备
表格、课件、小黑板
教学过程
一、情境创设,导入复习
1、判断下面每题中的两种量成什么比例关系?
①速度一定,路程和时间()
②路程一定,速度和时间()
③单价一定,总价和数量()
④全校学生做操,每行站的人数和站的行数()
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;
每小时千米,要行X小时。
指名学生口答,老师板书。
二、回顾整理,构建网络
(一)比的知识:
1.谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)
2.说一说用比的知识可以解决哪些实际问题。
让学生体会比在解决实际问题时的应用。3.完成教科书p83“回顾与交流”的3题
两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。
(二)比和分数、除法的`联系
出示:a∶b=()(())=()÷()(b≠0)教师问:
1.你会填写这个的等式吗?学生填好后,再问:
2.你的根据是什么?(比和分数、除法的联系)
3.那么比和分数、除法的联系是什么?它们的区别呢?
4.b为什么不能等于0?小组议一议,再交流。
5.谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?
(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)
(2)填空:()(())=()÷()=()∶()(填好后展示学生不同的结果。)
(三)比例尺的知识
什么是比例尺?
(四)正比例,反比例的知识:
(1)小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。
(2)班内交流,全班分享
(3)全班同学进行优化,形成知识网络图。
变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺三:重点复习,强化提高:
1.一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。
(1)学生独立思考
(2)同桌交流
3)全班交流
a自然语言b列表c画图d关系式
2.举出生活中正、反比例的例子
3.完成课本84页巩固与应用独立完成,班内交流。
四.自主检测,完善提高:
判断并说明理由
(1)出油率一定,香油的质量与芝麻的质量。
(2)一捆100米长的电线,用去的长度与剩下的长度。
(3)三角形的面积一定,它的底和高。
(4)一个数与它的倒数。
五、完成后班内交流,这节课你有什么收获?
【正反比例教学设计】相关文章:
比与比例教学设计12-17
比例的意义教学设计04-12
《按比例分配》教学设计06-27
《正比例》教学设计06-26
《比例的基本性质》教学设计03-31
《比例的意义》教学反思01-08
比例的意义教学反思09-10
比例的认识教学反思06-26
比例尺教学反思12-17