乘法分配律教学设计
作为一位不辞辛劳的人民教师,时常需要准备好教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么问题来了,教学设计应该怎么写?以下是小编为大家收集的乘法分配律教学设计,希望能够帮助到大家。
乘法分配律教学设计1
学习内容:
人教版小学四年级下册第三单元乘法分配律
学习目标:
1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。
2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。
3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。
学习重难点
借助乘法的意义理解乘法分配律的意义和内涵。
配套资源
实施资源:
《乘法分配律》教学课件
学习过程:
一、情境导入,引入新课
师:之前我们已经学习了乘法交换律、结合律,今天这节课我们继续学习乘法的另一个运算定律。
请同学们认真看下面的题目:有一个长方形的果园,原来宽20米,长80米,扩大规模后,长增加了30米。问:现在这个果园的面积有多大
二、学习新知
①自主探索,独立解决问题
请大家闭上眼睛想象一下,如果用一幅图来表示题目的意思,这幅图会是怎样的呢
把你想到的图形画在练习本上。并试着去解决这个问题。
②汇报交流,明确算法
谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。
③全班反馈(课件动态演示)
先来看第一种方法:
可以先算出扩大规模后果园的长,再算出扩大规模后果园的面积,即(80+30)×20=2200(平方米)
(设计意图:借助于课件,展示出这道题目的示意图,进行动态演示,可以让学生清楚地看到每一步的计算表示的实际意义是什么,对理解另一种方法打下基础。)
再来看第二种方法,可以先算出果园原来的面积,再算出后来增加的面积,最后把原来的面积和增加的面积全起来就是果园现在的面积。即80×20+30×20=2200(平方米)
(设计意图:借助于课件,进行动态演示,让学生从中清楚地看到这种方法和第一种方法的不同之处,同时又真正的明白,虽然方法不同,但所要求的结果完全一样)
同学们,你们有什么发现呢大家是不是已经发现了尽管这方法不一样,但这两种方法的结果都是一样的。那就说明(80+30)×20=80×20+30×20(这两个式子是相等的)
(设计意图:借助于课件的动态演示,使学生更清楚地看到,两种方法求出的是同一个结果,同时,更能给学生初步感悟乘法分配律提供一定的帮助。)
②师:刚才扩大规模后的长是增加了30米,现在给大家一次机会,你来决定让长增加几米同时请你用两种方法算一算,看用两种方法计算出的结果是否一样
如果我们把果园的宽的米数用圆形来表示,原来的米数用三角来表示,长增加的米数用五角星来表示,上面的式子我们是不是就可以这样表示了呢
( +▲)×★=×★+▲×★
(设计意图:利用课件的方便性,在很短的时间给学生展示了不同的数据所计算出的结果都是一样的,让课堂节奏更稳,更快,解决问题更高效,同时在一定程度上让学生的'注意力更加集中了。)
③接下来,我们共同来验证一下,看我们想到的这个式子是不是正确的呢现在这里面原来的长和宽及扩大规模后增加的长的数量都由你来决定填写,填写完后,进行计算,验证,来证明这个等式不仅适用上面的两个例子,同样适用于你所举的例子。
验证;(100+50)×40=100×40+50×40
结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把积相加。
同学们,你们真厉害,你们所发现的规律在数学上就叫做乘法分配律。用字母表示为a+b)×c=a×c+b×c
三、巩固练习:
1、请看下面这个算式,(40+8)×25
结合刚才的长方形的面积,你想到了什么
我们可以想象成宽是25米,原来的长是40米,扩大规模后增加的长是8米,因此我们可以先求出原来的面积40×25和增加的面积8×25,合起来就是现在的面积。
2、计算59×20+41×20
师:除了把它们想象成刚才的长方形的面积,还可以想象成什么呢实际上生活中有很多这样的情况,我们可以把它想象这样的场景:学校要举行歌唱比赛,参加的20名同学要统一着装,老师们先买了20件上衣,每件59元,又买了20条裤子,每条裤子41元,老师买这些衣服一共花费了多少元钱呢
59×20+41×20
=(59+41)×20我们可以先求出一套衣服多少元再乘以
=100×20它的套数,是不是计算更简单呢
=20xx
亲爱的同学们,相信你们通过今天的学习,对乘法分配律已经有了一个初步的认识,今天的课快要结束了,老师留给大家一个问题:如果这道题目问的是原来的面积比增加的面积多多少平方米你认为应该怎样做呢如果有两种方法可以解答,你认为这两种方法之间有联系吗请大家认真思考,下节课我们再见!
乘法分配律教学设计2
【教学目标】
1、深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
2、能根据算式各自的特征,选择使用、灵活计算。
3、能根据乘法分配律适用条件,恒等变形算式,提高计算的转化能力!
4、通过计算,培养仔细看题、留意特点、反映迅速等良好习惯!
【教学重点】
深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
【教学难点】
1、能根据算式各自的特征,选择使用、灵活计算。
2、能根据乘法分配律适用条件,恒等变形计算式,提高计算的.转化能力!
【教学过程】
环节
教师活动
学生活动
设计意图
一、回顾引入
1、我们昨天学了……,请写出依据(字母表达式)
2、看着这个字母表达式,你想说点什么?
1、学生一起回答省略部分
2、学生各自在自己草稿本上写出字母表达式
3、让学生充分表达!
以忆引练,为接下来的练习做知识铺垫准备!
二、开展练习
分别出示:
1、基础题
(1)选择题
(2)填空题
(3)用简便方法计算
1、口答选择题
2、笔写填空题
3、比赛方式完成简便计算
1、通过选择和填空两种题型,让学生进一步体会乘法分配律的现实意义及其算式结构。
2、训练准确简便计算能力,也是巩固新课掌握的计算方法
小结:正确使用乘法分配律,留意算式结构,小心相同因数混乱。
2、提高题(计算各题,怎样简便就怎么算)。
1、先标出你认为能够简便计算的题
2、动笔计算,并验证自己的观察
养学生观察力、细心力、分析力、和计算灵活性。
小结:一看、二想、三算
3、拓展题(能快速算出下面各题吗?)。
用作选做题:做你会计算的题
训练学生拆数、拼凑、约感能力,满足学习能力较强学生需要
小结:变看似不能简便计算为能够简便计算
三、全课总结
1、涵盖小结内容
2、分享个性错误(如写错数字、计算错),避免同学犯与自己相同的错误。
乘法分配律教学设计3
《探索与发现(三)乘法分配律》教学反思
东新四小学 王唯
教学内容:
小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页
教学目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:理解乘法分配律的特点。
教学难点:乘法分配律的正确应用。
教学过程:
一、复习回顾
(出示课件1)计算
35×2×5=35×(2×)
(60×25)×4=65×(×4)
(125×5)×8=(125×)×5
(3×4)×5 × 6=(×)×(×)
师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。
二、探究发现
(出现课件2)
师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?
生:我发现有两个叔叔在贴瓷砖
生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。
师:你最想知道什么问题?
生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?
生:我估计大约有100块瓷砖
生:我估计大约有90块瓷砖。
师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)
师:谁来向大家介绍一下自己的做法?
生:6×9+4×9(板书)
=54+36
=90
分别算出正面和侧面贴的块数,再相加,就是贴的总块数。
生:(6+4)×9(板书)
= 10×9
=90(块)
因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。
师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?
生:我发现计算方法不同,但结果却是一样的。
6×9+4×9 = (6+4)×9(板书)
师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?
(学生举例,教师板书)
师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)
小组1:符合要求,因为每组中两个算式都是相等的。
小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。
(板书用=连接算式)
师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。
小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。
小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的'第三个定律。
师:大家齐读一遍。
师:和同桌说一说自己对乘法分配律的理解。
师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。
(a+b)×c=a×c+b×c
师:这叫做乘法分配律
三、巩固练习:
1、计算
(80+4)×25 34×72+34×28
师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。
2、判断正误
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
(12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
四、总结
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
[板书设计]
探索与发现(三)
-----乘法分配律
(a+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
(40+4)×25 = 40×25+4×25
(64+36)×42 = 42×64+42×36
乘法分配律教学设计4
学情分析:
乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。
教学目标:
1.理解并掌握乘法分配律并会用字母表示。
2.能够运用乘法分配律进行简便计算。
3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。
4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。
教学重点:
理解并掌握乘法分配律。
教学难点:
乘法分配律的推理及运用。
教学过程:
一、情景激趣,提出猜想
1.情景
暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)
出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?
(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)
①整理条件、问题
从这段资料中你知道了那些信息?王老师遇到了哪些问题?
②学生列式,抽生回答: (18+23)×8, 18×8+23×8
③交流算式的意义
第一个算式先算什么?再算什么?第二个算式呢?
④计算:(发现两个算式结果相等)
⑤观察、分析算式特点
咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!
现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?
⑥全班交流,引导学生从下面几个方面进行思考
A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。
B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。
C.计算结果:结果相等。
(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)
2.提出猜想
真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?
怎样才能知道像这样的算式都有这样的规律?
引导学生想到用举例的方法进行验证。
师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。
(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)
二、举例验证,证明合理性
1.全班举例:抽生举例,全班进行判断,看所举的.算式是否符合猜想的特征。
2.分组举例
两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。
3.交流:谁愿意把你举的例子和大家一起分享?
A.这个式子符合要求吗?
B.这些式子都有一个共同的规律,这个共同的规律是什么?
教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。
(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)
三、概括归纳,建立模型
1.个性概括
这样的式子你们还能写吗?能写完吗?
强调这样的例子还有很多很多,是写不完的。
你能用一个式子将所有的像这样的式子都概括出来吗?
学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。
2.统一认识
教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成
(a+b)×c=a×c+b×c
给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。
3.进一步认识
这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。
齐读式子。
(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)
四、巩固应用,深化认识
1.哪些算式与72×35相等
72×30+72×5
72×35 72×30+5
70×35+2×35
70×35+2
问:为什么相等?
(设计意图:让学生理解乘法分配律的本质意义)
2.你会填吗?
(10+7)×6= ×6+ ×6
8×(125+9)=8× +8×
7×48+7×52= ×( + )
问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。
(设计意图:学生进一步深刻理解乘法分配律)
3. 7×48+7×52 7×(48+52)
这两个式子你想选择哪个进行计算?为什么?
如果只给你第一个式子,你会想办法让你的计算变得简便吗?
小结:利用乘法分配律有时候可以使计算变得更简便。
(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)
<<<1234>>>
4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。
①34×72+34×28(订正时问:为什么不直接算)
(80+4)×25
订正时问:把(80+4)×25写成80×25+4×25依据是什么?
如果不用好不好算?
(80+20)×25
问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?
教师小结:在计算中要根据数据特点,灵活运用乘法分配律。
②21×25 75×99+75
小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。
(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)
五、全课小结
孩子们,你们今天收获了什么?
当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?
板书设计
乘法分配律
(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)
=41×8 … … … …
=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25
18×8+23×8 … … … … (80+20)×25
=144+184 个性概括:… …
=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75
乘法分配律教学设计5
教学内容
P36页例3,做一做,练习六习题。
教学目标
1、知识与技能:引导学生探究和理解乘法分配律。
2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
教学重点
乘法分配律的意义和应用。
教学难点
乘法分配律的反应用。
教学过程
一、目标导学
(一)导入新课
1、复习导入
(8+2)×1258×125+2×125
2、揭示课题:乘法分配律
(二)展示目标(见教学目标1、2)
二、自主学习
(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)
1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?
2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?
3、计算这两道题你发现了什么?能用一句话概括吗?
4、这是乘法的.什么运算律?用字母怎样表示?
5、会用简便算法计算4×25+6×25吗?
(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)
(三)自学检测
下面哪些算式运用了乘法分配律?
117×(3+7)=117×3+117×7
24×(5+12)=24×17
(4+5)×a=4×a+5×a
三、合作探究
(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。
(二)师生互探
1、解答各小组自学中遇到不会的问题。
2、针对自学提纲5题请不同方法同学汇报。
3、结合“自学提纲”引导学生归纳总结:(并板书)
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。
四、达标训练(1、2题必做,3题选做、4题思考题)
1、下面哪个算式是正确的?正确的打√,错误的打×。
56×(19+28)=56×19+28()
32×(7+3)=32×7+32×3()
64×64+36×64=64×(64+36)()
2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数
⑴25×(200+4)⑵35×201
25×200+25×435×200+35
⑶265×105—265×5⑷25×11×4
265×(105—5)11×(25×4)
3、用乘法分配律计算。
103×20xx×5524×205
4、在()里填上适当的数。
167×2+167×3+167×5=167×()
28×225—2×225—6×225=()225
39×8+6×39—39×4=()×()
五、堂清检测
(一)出示检测题(1-2题必做,3题选做,4题思考题)
1、用简便方法计算。
24×75+24×25125×22—125×14
(25+20)×435×99+35
2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?
3、计算。
89×10135×36+35×63+35
4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?
(二)堂清反馈:
作业布置
练习册相关习题。
板书设计
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
乘法分配律教学设计6
乘法分配律
一、教学目标:
(一)知识目标:
使学生在解决实际问题的过程中发现并理解乘法分配律。
(二)智能目标:
使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
(三)情感目标
使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点:在解决实际问题的过程中发现并理解乘法分配律
教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。
二、教法学法:启发式教学
三、教学准备:
多媒体课件投影仪主动参与,乐于探究
四、教学过程
(一)创设问题情境
五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)
【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。
(二)展开探索过程
1、初步感知
(1)提出要求:仔细观察,从图中你获得了哪些信息?
买这些些服装,叶老师一共要付多少元钱呢?你能列出综合算式吗?
(2)学生独立列式,教师巡视
(3)交流反馈:你是怎么想的,怎样列式
板书:65×5+45×5(65+45)×5
请生交流解题思路,并比较哪种解法更简便。
(4)列成等式
通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?
小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。
2、类比展开
(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?
(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!
(3)学生小组合作完成,交流反馈,相机板书:
32×6+65×6(32+65)×6
32×8+65×8(32+65)×8
32×6+45×6(32+45)×6
32×8+45×8(32+45)×8
(4)观察算式,引导列成等式,仿照等式随意举例
像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。
举例,小组交流,挑选几组板书。
【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。
3、体验感悟
(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?学生有自己的语言描述发现的规律。
(2)修改算式,感悟规律
通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。
课件出示:
(3+4)×63×6+4×6
3×17+3×53×(17+5)
20×(5+13)20×5+5×13
(13+7)×413×4+7
(13+7)×413×4+7
交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。
【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。
4、揭示规律
(1)游戏“交朋友”
课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)
出示:6×(10+20),(A+100)×5,(42+45)×▲,请生帮它们交朋友。
(2)揭示规律
像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表
示??)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8 9×18+9×282
【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。
(三)巩固内化
1、根据乘法分配律,在__里填入合适的数
(1)、(15+23)×2=____×2+_____×2
(2)、(37+12)×16=37×____+12×____
(3)、___×___+___×___= ( 16+26)×8
(4)、(125+11)×8=____×____+____×_____
(5)、276×38+276×62=____×(___+___)
如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?
2、判断下面各题是否正确,把错误的改正过来
(1)2×15+4×15=(2+4)×15??????()
订正:
(2)5×(20+6)=5×20+6????????()
订正:
(3)8×23+8×27=8×23+27????????()
订正:
(4)9×(6×4)=9×6+9×4????????()
订正:
3、应用题
一块长方形的`桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)
*4、用简便方法计算(任选一题)
①(125+9)×8 ②128×31-28×31 ③43×5+46×5+11×5
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。
(四)总结回顾
今天这节课,你有什么收获,从中你得到什么启发?
【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。
(五)课堂作业
六、说板书设计
乘法分配律
例:短袖衫裤子夹克衫乘法分配律:
32元45元65元两个数的和与一个数相乘,可以把这65×5+45×5=(65+45)×两个数分别和这个数相乘,再相加。=325+225=110×5
=550(元)=550(元)
其他购买方案:
32×6+65×6=(32+65)×6
32×8+65×8=(32+65)×8
32×6+45×6=(32+45)×6
32×8+45×8=(32+45)×8
〔a+b〕×c=a×c+b×c
《乘法分配律》教学反思教学乘法分配律之后,发现学生的学习效果很不理想,特别是乘法分配律的运用,正确率很低。针对这种情况,我想,在教学中应该注意以下几个问题:
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。教学中通过“朝三暮四”的故事解决“这只猴子20天要吃多少个栗子?”这一问题,结合具体的故事情景,得到了(3+4)×20=3×20+4×20这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等
的?”这里不仅要从解题思路的角度理解(3+4)×20=3×20+4×20是相等的,还要从乘法的意义的角度理解,即左边表示7个20,右边也表示7个20,所以(3+4)×20=3×20+4×20。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88 ①竖式计
算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练。
针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等
乘法分配律教学设计7
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用
教学难点:乘法分配律的反应用.
教具:教学课件一套
教学过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
7×28+7×72
7×(28+72)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。
2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)
(1)看到这幅图画,你了解到了什么信息?你想提什么问题?
(2)你能用两种方法列出综合算式吗?
(3)学生独立列式,教师巡视
(4)交流反馈:你是怎么想的,怎样列式计算
板书:65×5+45×5 (65+45)×5
(5)观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)像这样的等式写得完吗?你能用自己的.方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
(5)大屏幕出示关于乘法分配律的总结,学生齐读。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(8+4)× 25 34 ×72+34 ×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
四 、巩固内化
1、 做“想想做做”第1题
学生独立填写,指名报,全班共同校对。
明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?
2、 做“想想做做”第2题
学生自己判断。然后请生说说判断的依据。
3、 做“想想做做”第3题
让每位学生都用两种方法计算长方形的周长,指名板演。
明确:这两种算法有什么联系?符合什么规律?
小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。
4、 做“想想做做”第4题
让学生各自按运算顺序计算,指定两人板演,共同订正。
提问:每组两道算式有什么联系?哪一题的计算比较简便?
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
五、 总结回顾
乘法分配律教学设计8
教学内容
义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律
教材分析
本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。
学情分析
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。
教学目标
1、让学生经历发现归纳乘法分配律的`过程,理解和掌握乘法分配律。
2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。
3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。
教学重点
理解乘法分配律的意义。
教学难点
发现与归纳乘法分配律。
教学准备
课件习题卡
教学过程
一、结合实事创设情景,引入新课
1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!
2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?
3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?
二、合作交流,探索发现新知
1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。
板书:乘法分配律
2、发现和归纳乘法分配律
(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?
(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?
(3)生举例并展示,共同验证并读一读式子。
(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?
(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。
3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。
三、小结
同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?
四、分层练习,逐级达标
1、填一填:习题卡第一题
巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。
学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。
2、看一看:习题卡第二题
3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。
五、回顾课程,进行总结
同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?
板书设计
乘法分配律
(5+10)×24=5×24+10×24
(a+b)×c=a×c+b×c
25×(4+2)=25×4+25×2
a×(b+c)=a×b+a×c
习题卡
填一填
1、(32+25)×4=32×( )+25×( )
2、(64+12)×5=( )×5+( )×5
3、(7+6)×8=7868
4、(43+25)×2=
5、3×6+7×6=(+)
看一看
下面哪个算式是正确的?正确的画“√”,错误的画“×”
(19+28)×56=19×56+28
(7×3)×32=7×32+3×32
64×64+36×64=(64+36)×64
乘法分配律教学设计9
教学内容:
北师大版四年级下册数学教科书第36页内容,和练习四的第5、6、7、9题。
教学目标:
1、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
教学重点:
充分感知并归纳乘法分配律。
教学难点:
理解乘法分配律的意义。充分感知并归纳乘法分配律。
教具准备:
多媒体课件
教学设想:
本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。
活动过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
9x37+9x63
9x(37+63)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
9x37+9x63=9x(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为xx猜想。(板书:猜想)
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6x9+4x9和(6+4)x9,为什么这样列算式,观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)
轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了xx猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,xx同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。
等号左边表示什么意思?等号右边表示什么意思?大家说的.意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。
在读这句话的时候,哪里应特别注意?
请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)x2534x72+34x28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38x29+3843x102
(4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)
1、请大家根据运算定律在下面的_里填上适当的数。5、6、7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。
2、大家请到数学医院,帮老师判断对错。
3、完成连一连。(给一分钟思考时间,然后抢答)
4、完成填一填。(这道题我找表现最好的小组来开火车)
5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)
五、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?
请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
乘法分配律教学设计10
一、教材分析:
乘法分配律是北师大版教材四年级上册第四单元运算律第56、57页教学内容。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程。同时,学好乘法分配律是学生下节课进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
二、教学目标:
1、结合具体的问题情境,经历探索乘法分配律的过程,理解并掌握乘法分配律的意义;
2、在观察、比较、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁;
3、在学习活动中不断产生对数学的好奇和求知欲,培养良好的学习习惯。
三、教学重点和难点:
教学重点:经历探索乘法分配律的过程,建立乘法分配律模型。
教学难点:理解乘法分配律的意义。
四、教学流程:
(一)创设情境,感知规律
师生谈话导入新课。
师:同学们,“爸爸和妈妈都爱我。”这句话还可以怎么说?
“小明和小华都是他的好朋友。”这句话也可以怎么说?
生:……
师:真聪明,回答正确,在数学王国里也有类似的表达,今天让我们一起去探索吧!
[设计意图:本环节通过创设一个充满趣味的生活问题,引领学生发展自身的灵性,寻求数学知识,与现实问题之间的本质联系,促进学生感悟、内化、激发学生探索新知的兴趣。]
(二)解决问题,明晰算理。
1、情境一——厨房贴瓷砖
(1)让学生从图中获取数学信息,提出数学问题。
(2)生汇报,师择取问题:一共贴了多少块瓷砖?
让学生用多种方法列综合算式解答问题,然后小组内交流算法及解题思路。
(3)组织全班交流,要求学生讲清楚是怎样想的。教师配以课件演示并适时板书四种算法:3×10+5×10;(3+5)×10;4×8+6×8;(4+6)×8。
(4)小组讨论:观察四个算式,哪两个算式联系紧密,是否可以用等号连接?
(5)全班交流。[(3×10+5×10与(3+5)×10联系紧密,可用等号连接;4×8+6×8与(4+6)×8联系紧密,可用等号连接。]
追问:为什么可以用“=”连接?让学生充分讲道理。
(6)比较:观察上面两组算式,你有什么发现?(第一组中的第一个算式里10出现了两次,而第二个算式里10只出现了一次,第一个算式没有小括号,第二个算式有小括号,改变运算顺序了……)
[设计意图:关注学生已有知识经验,以学生身边熟悉的情境,为教学的切入点,激发学生主动学习的需要。为学生创设了与生活环境、知识、背景密切相关的感兴趣的学习情境——根据主题图,提出问题并通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。]
2、情境二——花圃
(1)让学生看图并解决问题。
(2)学生汇报算法及解题思路,师配以课件演示并板书:(30+25)×2;30×2+25×2。
师:这两个算式是否可用等号连接,为什么?(可以因为它们的'结果相同,都是求篱笆的长,只是运算顺序不同。)
3、举实例
师:生活中,像用这样两种方法解决的问题很多,你能举个例子吗?学生独立思考后全班交流。比如:(1)老师买了5个篮球和5个足球,一个篮球50元,一个足球80元,一共花了多少钱?(2)一辆中巴车限乘20人,一辆小轿车限乘4人,现在各租2辆,一共能坐多少人?
[设计意图:创设问题情境,联系生活实际为学生感受乘法分配律提供现实背景,在学生独立思考的基础上,引导有效的交流,使学生对乘法分配律有所初步感知。]
(三)观察对比,概括规律
这一环节是本节课的中心环节,为了突出重点,突破难点,发挥学生的主体作用。我安排了观察总结、举例验证、抽象概括和尝试应用四个层次进行教学。
1、观察总结
(1)师:同学们,请观察黑板上这几组算式,你有什么发现吗?请小组内讨论交流。
(2)学生汇报(学生结合算式,能说出自己的发现即可)。
(3)教师在学生总结的基础上指着算式小结乘法分配律的意义:两个数和同一个数相乘,等于把这两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)师揭示课题,板书课题:乘法分配律。
[设计意图:这一环节让学生从多组算式入手,通过观察比较,互相补充,在算式中寻其相同点和不同点,并在分析题意中,找寻其存在规律的必要性,帮助学生在理解算理的基础上,明确乘法分配律的含义。]
2、举例验证
让学生列举不同的算式来验证乘法分配律,再小组交流,集体反馈时教师有选择地板书学生列举的算式并适时表扬。
[设计意图:学生举例验证过程,是学生不完全归纳的过程,对于学生识记乘法分配律,理解乘法分配律的内涵有重要的作用,通过自己举例验证有利于学生将新的知识纳入到自己已有的知识体系。]
3、抽象概括
(1)让学生用a、b、c表示乘法分配律,有困难的学生教师即时指导,再汇报交流,师板书:a×c+b×c=(a+b)×c,生齐读字母公式。
(2)让学生比较乘法分配律与“爸爸和妈妈都爱我,爸爸爱我,妈妈也爱我。”这两句话之间的相似之处。
生:a相当于爸爸,b相当于妈妈;c相当于我,爱相当于乘号。
[设计意图:让学生用字母表示乘法分配律,历经归纳推理到抽象概括的过程,体会用字母式子表示乘法分配律的严谨与简洁。]
4、尝试应用
(1)让学生用自己喜欢的方法表示4×9+6×9……,说明乘法分配律是成立的;
(2)学生独立完成后,小组交流;
(3)教师巡视抽取有代表性的方法展示给大家看;
(4)再问这个算式还可以怎样表示?学生说出另一种算式,课件呈现4×9+6×9=(4+6)×9
[设计意图:让学生借助自己喜欢的方式结合此题说说这个算式还可以怎样表示,学生的思考过程就是乘法分配律形式的再现过程,要让多个学生表达,在相互表达中,加深对乘法分配律的理解。]
(四)挑战过关,应用规律:
第一关:请算一算一共有多少个方格?(用两种方法列综合算式计算)。
(1)学生汇报算法;
(2)比较哪种方法比较简便?为什么?
第二关:填一填
①(12+40)×3=□×3+□×3
②15×(40+8)=15×□+15×□
③78×20+22×20=(□+□)×20
④66×28+66×32+66×40=(□+□+□)×□
(1)学生展示填写的答案。
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便?为什么?
第三关:学校要给28个人的合唱队买服装,一件上衣58元,一条裤子42元,请你算算买服装要花多少钱?(用两种方法列综合算式解答)
(1)学生汇报算法。
(2)比较哪种方法比较简便?小结:学习了乘法分配律可以灵活选择算法,怎么计算简便就怎么算。
[设计意图:多样练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓展知识视野,完善认知结构,提升认识境界、增长人生智慧的过程。在练习中,帮助学生继续完善对乘法分配律的理解。]
(五)课堂总结,梳理新知
让学生谈谈本节课的收获,教师加以梳理,最后质疑解惑。
[设计意图:让学生将知识系统化、条理化,对在获取新知中体现出的数学思想方法进行反思,从而加深对知识的理解。]
五、板书设计
乘法分配律
(3+5)×10=3×10+5×10
(4+6)×8=4×8+6×8
(30+25)×2=30×2+25×2
(35+65)×5=35×5+65×5
(2+3)×5=2×5+3×5
(a+b)×c=a×c+b×c
乘法分配律教学设计11
设计思路:
本节课从学生的生活经验出发,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自己的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生积极地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的能力得到了发展。
一、教学内容
义务教育教科书(人教版新教材)小学数学四年级下册第三单元第二节内容乘法运算定律之乘法分配律(第26-28页内容)。
二、教材内容分析:
《乘法分配律》是新人教版小学数学四年级下册,第26-28页内容。本课的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课内容的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要
三、学生情况分析:
今天我们学习的乘法分配律是在已经掌握了乘法交换律、结合律的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有一定的观察、比较、分析、理解的能力,但运用能力不够,抽象概括能力不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有一定的难度。
四、教学目标
针对教材的特点和学生情况,分别从知识与技能、过程与方法、情感态度与价值观三维目标来确定本节课的教学目标.
知识与能力目标:理解和掌握乘法分配律的意义,培养学生分析、归纳的能力;学会用字母表示乘法分配律;掌握乘法分配律的特点,区分乘法分配律与结合律的不同点。
过程与方法目标:经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。。
情感、态度与价值观目标:感受数学知识之间的逻辑之美,提高学生的审美能力,培养学生独立思考的良好学习习惯。
五、教学重点、难点
重点:本节课的教学重点是理解乘法分配律的意义,并归纳出定律。
难点:难点是理解乘法分配律的意义及应用。
六、教学准备:交互式多媒体、课件ppt.(以下均为做课课件)
七、教法、学法:
(1)、教法:由于学生已初步具有探索、发现运算定律并应用运算定律简便计算的经验,本节课遵循“解决问题—发现规律—交流规律—表达规律”的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,也有利于他们顺利学习和掌握本节课内容。
(2)学法:在实际教学时,我强调依例题情境引导观察、比较、分析、理解、概括出乘法分配律,以亲身经历贯穿学习全过程,重视学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。让学生多思、多说、多练,积极主动参与教学的整个过程。
八:教学过程:
(一)、谈话导入、激发兴趣。(课件出示图片ppt4)
1.谈话:不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说是不是挺有趣的其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究(见课件)
设计意图:看我们中国的语言很神奇、美妙。在数学上是否也有这样神奇、美妙的现象呢那么,我们数学上有没有可能把一个算式变成两个算式,两个算式合成一个算式呢
使学生带着问题,带着对算式的好奇心进入本科的学习。激发学生的求知欲,体现数学知识源于生活以及数学的现实意义
(二)、创设生活情境,引入新课。
谈话:通过上节课的探索,我们已经发现了乘法交换律和乘法结合律,你们还记得吗老师记得在上节课的学习中有一个问题没有解决,对吗咱们今天再继续探索,看看又会发现什么新的规律。
(课件出示主题图)(课件出示图片ppt5)
3.提问:(出示ppt6)
(1)你从图中获得了哪些信息
(2)今天我们要解决的问题是什么
预设:一共有25个小组,每组里4人负责挖坑和种树,2人负责抬水、浇树。问题是“一共有多少名同学参加了这次植树活动”
设计意图:课件设计是为了让学生想说、敢说、抢着说,激发他们早点进入最佳学习状态,为探究新知识聚集动力。
(三)、自主探索、合作交流。(课件出示ppt7)
一)初步感知
1.提问:要解决一共有多少名同学参加了这次植树活动先求什么再求什么你是怎么列式计算的
2.学生解答后汇报。
追问:还有不同的想法吗
板书:(4+2)×25 4×25+2×25
3.组织交流
(1)说说每道算式的意思
预设:(4+2)×25是先求出每组有多少人,再计算出25组有多少人。4×25+2×25是先求才挖坑和种树的人数,再求出抬水和浇水的人数,最后求出一个的人数。
(2)比较最后的计算结果。(相同)
追问:可用等号连接吗写成一个算式。
板书:(4+2)×25 = 4×25+2×25
读:谁能把这道等式读一遍。多读从语言上感悟乘法分配律。
观察,这道等式左边和右边有什么相同的地方和不同的地方
请跟你的同桌说说。全班汇报。
相同的地方:结果相同,每个算式都有3个数。
不同的地方:运算顺序不同。
设计意图:合理利用并依据现实生活实际改造现有的主题图情境,更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性
(二)、猜想验证。(课件出示ppt9)
1.小组内写一写,算一算,举出这样的例子。
2.汇报交流。
3.引导学生总结概括。(提示:等式左右两边是怎样计算的)
预设:等号左边的式子是先算括号里两个加数的和,再和括号外面的数相乘;
而等号右边的式子是把括号里的两个加数分别去乘括号外面的数。
(三)、同类推广,总结归纳。(出示ppt10、11)
1.有这样特征的例子多不多,你能写一个这样的等式吗(要求数字用得简单些)。请你在你的'本子上写一写。
2.你是怎样验证的。
3.同桌互相验证。
4.用符号表示:这样的式子很多,你能用自己喜欢的办法把具有这种特征的等式表示出来吗(用彩笔)
5.揭示课题(小结:出示ppt12)
我们已经用自己喜欢的方法把这种规律表示出来,其实,这就是我们今天要学的—《乘法分配律》,一起读一遍。
6.统一用字母表示:(课件出示ppt13)
如果用字母a、b、c表示这三个数,你能用它们表示具有这种特征的式子吗
(a+b) ×c=a×c+b×c
总结规律:
(a+b) ×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配率。
设计意图:新课程标准指出,学生学习数学的过程是充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学学习活动,因而在设计这一环节时让学生写出一个算式的另一种形式,并说说这样写的理由,让学生借助已有的生活经验来叙述自己写的算式,增加学生对乘法分配律的理解,同时让学生写一写这样的算式,说说自己是怎样写的,从而让学生自己从中发现乘法分配律,培养了学生的探究能力。]四)学习乘法分配律的逆用。
1、既然左边=右边,那右边等于左边,谁来读一读。
2、从右往左看,这个式子有什么特征
3、乘法分配律可以从左边用到右边,也可以从右边用到左边。
设计意图:让学生明白:乘法分配律左右两边可以相互逆用。
(四)、巩固应用,拓展延伸。(出示课件ppt16)
1.判断正误,下面哪些算式是正确的正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
问题:说一说你的判断理由。
2.下面哪些算式运用了乘法分配律(出示课件ppt17)
117×3+117×7=117×(3+7) ( )
4×a+a×5=(4+5)×a ( )
24×(5+12)=24×17 ( )
36×(4×6)=36×6×4 ( )
3.李阿姨购进了60套这种运动服,花了多少钱(出示课件ppt18)
4.观察下面的竖式,说一说在计算的过程中运用了
什么运算定律。出示课件ppt19
25×12=25×2+25×10
5,做一做,用乘法分配律计算下面各题。(出示课件ppt19)
103×12 20×55
6、回顾、拓展
1、老师想知道“挖坑和种树的人数”比“抬水和浇树的人数”多多少人你会列式吗
学生回答,师板书。(在原有算式上添上减号即可)
(4-2)×25 = 4×25-2×25
2、说说算式所表达的意思。
3、进一步完善乘法分配律。字母表示为:(a-b) ×c=a×c-b×c
[设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]
(五)、课堂小结
这节课你学会了什么请说一说。
板书设计乘法分配律
(4+2)×25 = 4×25+2×25
(a+b) ×c=a×c+b×c a×(b+c)=a×b+a×c
两个数的和乘一个数,可以把这两个加数分别与这个数相乘,再把两个积加起来,结果不变。这叫做乘法分配率。
教学反思
乘法分配律的教学是在学生学习了乘法交换律、乘法结合律的我基础上教学的。乘法分配律也是学生在这几个定律中的难点。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。要在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。
乘法分配律教学设计12
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
教学内容:教材第54~55页例题,完成“做一做”。
教学目标:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
教学重、难点:
发现并理解乘法分配律。
教具准备:
多媒体课件一套。
教学过程
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。
提问:猜一猜,这两种方法的计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的`。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。
乘法分配律教学设计13
教学目标:
1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力。
2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。
3、能够运用乘法的分配律进行简便计算。
重点、难点:
重点:学生参与推导乘法分配律的过程。
难点:乘法分配律的推理及运用。
教学过程:
一、比赛激趣,提出猜想.
(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)
9×(37+63)9×37+9×63
(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?
教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。
引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×(37+63)=9×37+9×63
(3)将学生的发现以他(她)的名字命名为“xxxx猜想”。
设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?
(1)全班同学独立完成。
(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)
还有不一样的方法吗?谁来说说看?(生回答,师板书)
算式(28+22)×3和28×3+22×3的每一步各表示什么?谁能说给大家听听?
(3)观察这两个算式,你有什么发现?
引导学生比较两个算式异同点,并指名学生说一说自己
生:这两个算式的得数是一样的。
师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。
生:等于号
师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以(35+25)×3=35×3+25×3
师:再和前面的一组式子一起观察,
9×(37+63)=9×37+9×63
(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)
2、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)
(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的`例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)
(2)学生回报:谁来说一说自己举的例子。
(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)
(4)轻声读这些等式,你发现了什么?
3、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?
学生回报。
(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)
同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?
结合学生回答,教师板书:(a+b)×c=a×c+b×c
齐声读两遍。
(4)对于乘法分配律,用字母来表示,感觉怎样。
引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。
三、加强应用、深化理解
1、瞻前顾后填一填。
(10+7)×6=□×6+□×6
8×(125+9)=8×□+8×□
7×48+7×52=□×(□+□)
2、火眼金睛看一看:
判断下面算式是否正确?并说明理由?
56×(19+28)=56×19+28()
32×(7×3)=32×7+32×3()
25×12+12×75=12×(25+75)()
25×99+25=(99+1)×25()
3、利用乘法分配律,计算下列各题。(80+4)×2534×72+34×28师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、找朋友
(10+6)×410×4+610×4+6×4
5×(7+9)5×7+5×95×7×9
3×25+7×253+7×25(3+7)×25
5、对口令
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、脑筋急转弯。
猜一猜,等号后边是三个什么字?
木×(1+3+2)=?
四、总结:
1、回忆一下,这节课你学会了什么?
2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。
乘法分配律教学设计14
教学内容分析:
乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学过程:
一、创设情境,激趣导入。
1、出示:
125×8=25×9×4=18×25×4=
125×16=75+25=89×100=
教师请个别学生口算并说出部分题的口算依据及应用的定律。
2、再出示:119×56+119×44=
师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?
二、引导探究,发现规律。
1、出示课本插图
师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?
生:我看到两个工人叔叔在贴瓷砖。
生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。
生:老师,我发现两个叔叔贴的.瓷砖一起数的话,一行有10块,一共有9列。
师:你真细心。大家能根据获得的信息提一个数学问题吗?
学生提问题,教师出示问题:一共贴了多少块瓷砖?
2、估计
师:谁能估计工人叔叔大约贴了多少块瓷砖?
学生试着估计。
3、列式解答
师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。
学生用自己喜欢的方法计算,教师巡视。
师:谁来向大家介绍一下自己的算法?
生:6×9+4×9(板书)
=54+36
=90(块)
师:这边的6×9和4×9分别是算什么?
生:分别算出正面和侧面贴的块数。
师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?
生:我是这样列的,(6+4)×9(板书)
=10×9
=90(块)
师:你能说说为什么这样列式吗?
生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。
师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?
生:计算方法不一样,结果却是一样的。
师:所以这两个式子我们可以用一个什么样的数学符号连接起来?
生:等于号。
教师板书。
4、观察算式的特点
师:观察等号两边的式子,它们有什么特点呢?
生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边
的算式是这两个加数分别与一个数相乘,再把所得的积相加。
生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。
师:是这样吗?你们能再举一些类似的例子吗?
5、举例验证
让学生根据算式特征,再举一些类似的例子。
如:(40+4)×25和40×25+4×25
63×64+63×36和63×(64+36)
讨论交流:
(1)交流学生的举例是否符合要求:
(2)交流不同算式的共同特点;
(3)还有什么发现?(简便计算)
师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。
6、字母表示。
师:如果用a、b、c分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。
7、揭示课题。
三、应用规律,解决问题。
课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?
1、(80+4)×25
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。
(3)鼓励学生独自计算。
2、34×72+34×28
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求。
(3)简便计算过程,并得出结果。
3、让生观察:36×3
=30×3+6×3
=90+18
=108
师:你能说说这样计算的道理吗?
生独自思考,小组讨论,全班交流。
四、总结。
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。
乘法分配律教学设计15
教学内容
《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。
教材简析
本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。
教学目标
1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。
3.学生感受数学规律的'确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。
教学重点
让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。
教学难点
清楚地表述自己发现的规律,理解及应用乘法分配律。
教学过程
一、创设情境,感知规律
1.提出问题,列出算式。
出示情境图
谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?
信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。
问题预设:济青高速公路全长约多少千米?(板书)
谈话:请你试着用两种方法在答题纸上解答。
生独立解答。
预设:
2.结合情境,感知规律。
提出要求:结合线段图说说算式每一步的含义。
回答预设:
①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。
②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。
设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。
二、研究素材,猜测规律
教师引导学生观察算式谈发现。
预设发现:两个算式结果相等。可以用等号连接。
教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。
预设区别:
①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。
②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。
谈话:根据前面运算律的学习,你有什么想法?
预设回答:这可能又是一个规律。
设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。
三、讨论交流,验证规律
1.举例验证规律。
谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。
学生独立计算举例。
指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。
谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。
预设举例:(25+35)×4=25×4+35×4
(60+50)×2=60×2+50×2
(65+55)×42=65×42+55×42
教师引导学生发现像这样的例子举不完,可以用省略号表示。
2.观察几组等式的相同点。
教师引导学生观察这几组等式的左边和右边分别有什么相同点。
预设回答:
①这几组等式的左边都是两个数的和乘一个数。
②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。
3.总结规律。
教师引导学生用自己的话说说这个规律。
谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。
教师出示乘法分配律。
谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。
生按要求说什么是乘法分配律。
谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?
预设回答:可以用字母表示。
教师要求学生在答题纸上试着用字母abc来表示乘法分配律。
学生试着在答题纸上写字母表达式。
指生板演(a+b)c=ac+bc。
谈话:对于乘法分配律用字母来表示,感觉怎么样?
预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!
教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。
设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。
四、巩固拓展,应用规律
1.连一连。
2.在□里填上合适的数或字母。
3.火眼金睛辨对错。
【乘法分配律教学设计】相关文章:
《乘法分配律》教学设计05-19
乘法分配律教学设计07-18
《乘法分配律》教学设计(精)05-19
乘法分配律教学设计15篇12-22
乘法分配律教学设计通用【15篇】07-26
整式的乘法教学设计07-25
小数乘法教学设计08-15
分数乘法教学设计10-25
“乘法估算”教学设计06-21