平行四边形的面积微课教学设计

时间:2022-12-16 17:00:12 教学设计 我要投稿

平行四边形的面积微课教学设计

  作为一名为他人授业解惑的教育工作者,通常需要用到教学设计来辅助教学,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。一份好的教学设计是什么样子的呢?下面是小编为大家收集的平行四边形的面积微课教学设计,仅供参考,希望能够帮助到大家。

平行四边形的面积微课教学设计

平行四边形的面积微课教学设计1

  内容简析:

  平行四边行的面积是人教版五年级上册第六单元第一节内容,本视频以面积公式的推导和公式的应用为主要内容。

  教学目标:

  1、使学生经历探索平行四边形面积计算公式的推导过程,渗透转化的思想。

  2、掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

  教学重点:

  探索并掌握平行四边形的面积计算公式,渗透转化的思想。

  教学设想:

  学习完平行四边行的面积,接下来要学习三角形、梯形的面积。所以通过这个视频要给学生渗透转化的思想,为下节课的学习打好基础。让学生理解、领悟,体验计算公式的推导生成显得尤为重要。

  教学过程:

  一、复习引入

  同学们三年级时我们学习了长方形、正方形的面积,今天我们一起来研究平行四边形的面积。

  二、质疑猜想

  师:对于面积,大家并不陌生。我们已经学过长方形和正方形等平面图形的面积,例如:长方形的面积=长×宽。

  质疑:平行四边形的面积怎样计算得出呢?

  三、操作验证

  用数方格的方法发现长方形和平行四边形的面积相等。要求:不满一格的算半格。

  2、验证面积=底×高

  那平行四边形的面积与底和高会不会有关系呢?现在我们利用转化的方法来验证一下。

  将平行四边形沿着底边上的任意一条高剪开,平移,可以拼成一个长方形。则平行四边形的面积就是长方形的面积,平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。长方形的面积=长×宽,所以平行四边形的面积=底×高。如果用字母S表示面积,a表示底,h表示高。则S=ah。

  四、公式应用

  学会了平行四边形的面积公式,我们可以用它来解决生活中的一些实际问题。

  有一个平行四边形的草坪,底是6米,高是4米,它的面积是多少?

  S=ah=6×4=24(平方米)

  五、全课总结

  回想一下刚才我们的学习过程,你有什么收获?

平行四边形的面积微课教学设计2

  教学内容:

  九年义务教育课程标准实验教科书,第九册P80~P81的内容。

  教学目标:

  1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。

  2、能应用平行四边形的面积计算公式解决实际问题。

  3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。

  教学重点:

  平行四边形的面积计算公式的推导与应用

  教学难点:

  理解和掌握用割补法推推导平行四边形的面积计算公式

  教具准备:

  平行四边形纸、长方形纸、多媒体

  学具准备:

  平行四边形纸、剪刀、尺子

  教学过程:

  一、创设情景,引出课题

  1、创设情景

  同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)

  2、引出课题

  提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。

  二、新课

  1、自学,用数方格的方法计算平行四边形的面积。

  (1)多媒体出示P80图和表格

  平行四边形底高面积

  mmm2

  长方形长宽面积

  mmm2

  (2)读一读数方格时要注意的地方

  (一个方格代表1平方米,不满一格都按半格计算)

  (3)让学生在电脑上填写表格

  (4)提问:观察表格的数据,你发现了什么?

  (5)学生汇报。

  (6)小结:通过数方格我们发现这两个花坛的面积是同样大的。

  2、推导平行四边形的面积计算公式

  (1)猜想

  如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。

  (2)验证

  a、动手操作

  剪——平移——拼,把一个平行四边形变成一个长方形。

  b、讨论:

  1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?

  2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?

  3、平行四边形的面积=?

  (3)汇报并点拨(在投影上展示)

  a、把平行四边形分成一个三角形和一个梯形

  b、把平行四边形分成两个梯形

  (4)小结:平行四边形的面积=底×高(并板书)

  (5)提问:用字母怎样表示这个公式?S、a、h各表示什么?

  (6)齐读公式,加深印象。

  3、教学例题

  (1)出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

  (2)读题,分析已知条件和问题。

  (3)独立完成。

  (4)在黑板上展示并评析。

  三、巩固练习

  1、填空

  (1)我们可以把一个平行四边形通过分割和平移转化一个(),这个()的()和平行四边形的底相等,()的()和平行四边形的高相等。所以平行四边形的面积=()×(),用字母表示S=()×()

  (2)要求平行四边形的面积,必须知道()和()

  2、一个平行四边形的停车位的底长5m,高2。5m,它的面积是多少?(由学生在多媒体课件上输入答案)

  3、选择题

  求这个平行四边形的面积()

  (a)6×8(cm2)

  (b)6×4。8(cm2)

  4、提高练习

  (1)如图所示这个平行四边形的高是多少?

  (2)这两个平行四边形的面积相等吗?(P83第5题)

  5、拓展练习

  清溪镇碧月湾地产将以165万元人民币价格出售如图所示的一块地。现市场价是0。4万元。

  (1)这块地值得买吗?

  (2)如果“我”要购买,你有什么建议?

  四、质疑

  五、这节课你有什么收获?

  板书设计:平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  S=ah

  =6×4

  =24(cm2)

  答:(略)

平行四边形的面积微课教学设计3

  【教学目标】

  1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

  2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  【教学重点、难点】

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

  【教具、学具准备】

  多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

  【教学过程】

  一、创设情境,抽取方法、导入新课

  1、师:同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

  师:老师今天也带来了两个图形,但并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

  学生思考、回答:

  (1)数格子的方法:一样大。

  (2)把第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

  动画演示割补的过程。

  师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地比较它们的面积——这种方法在数学上叫做“割补——转化”法。“转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

  既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积:

  这是个什么图形?(平行四边形)板书课题。

  二、应用方法,动手操作,探究新知

  1、预设问题:

  怎么就能计算出它的面积呢?(学生思考1分钟。)为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1)出示问题:

  师:先看老师给大家的几个提示(师读提示):

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ①平行四边形可以转化成学过的哪种图形?

  ②平行四边形的底和高分别与转化后的图形有什么关系?

  ③怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2)现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?比一比哪个小组最快研究出来。

  (3)小组探究。

  (4)组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线剪的?)

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  (其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

  (4)师生交流提炼,形成板书:

  师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

  师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

  3、教学例1:

  师:我们利用这个成果来解决一个问题好吗?

  出示例1:

  学生回答,教师板书:S=ah=6×4=24(cm2)

  4、巩固小结:

  通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

  三、分层训练,巩固内化

  1、求下面的平行四边形的面积,只列式不计算:

  (第三个图形计算中提问:还可以怎么计算?用12×9。6行不行?强调底与高的对应)

  2、慧眼识对错:

  (1)一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。()

  (2)平行四边形的底越长,面积就越大。()

  (3)下面平行四边形的面积是:8×5=40(平方厘米)()

  (4)一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。()

  3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,停车位的价格是每平方米5000元,老师一共需要付多少钱呢?

  要计算付多少钱,需要先怎么办呢?(测量长和宽,计算停车位的面积),老师已经测量好了,(出示数据:底3米,高5米)你们帮老师算算钱数好不好?

  学生计算、展示。

  师:谢谢你们帮我算出了应付的钱数,我回家就可以准备了。

  4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1。5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪的面积最小?你想到了什么?

  四、课堂小结:

  师:这节课你有什么有收获?

  师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

平行四边形的面积微课教学设计4

  【教学内容】:

  青岛版实验教材小学数学五年级上册第76页内容。

  【教学目标】:

  1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

  2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。

  3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。

  【教学准备】:

  学生:方格图、平行四边形纸片、直尺、剪刀、三角尺

  教师:课件、投影仪

  【教学过程】:

  一、谈话引入,提出问题

  师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?

  (1:虾池的面积是多少? 2:虾池是什么形状的?……)

  师:虾池是什么形状的?(平行四边形)

  师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)

  二、合作探索,解决问题

  1、猜想

  师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)

  师:希不希望通过自己的探究找到这个公式?

  师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。

  (学生独立思考)。

  师:谁来说?

  (1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)

  师:谁有不同想法?

  (2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)

  师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)

  师:对!我们要逐个进行验证,看看正确的公式究竟是什么。

  为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)

  1、小组同学先讨论验证的方法,再动手验证。

  2、小组成员要团结合作,合理分工。

  3、每组推选1名代表进行汇报,其他组员可以补充

  4、使用学具时注意安全,用完后装入信封。

  2、验证“底×邻边”

  师:先来验证“底×邻边”这个猜想对不对。

  比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。

  (学生合作,教师巡视)

  3、交流

  师:经过大家的`动手操作,相信都有答案了。哪个小组愿意先来交流?

  (我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)

  师:听明白他们小组的做法了吗?(找两人分享)感谢你们的`介绍。还有不一样的小组吗?(没有)

  师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。

  4、验证“底×高”

  (学生活动,教师参与)

  5、交流

  师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?

  (1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。

  师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)

  (2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)

  师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?

  师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)

  师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。

  师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)

  师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?

  (平行四边形没有“长”和“宽”。)

  师:说的真好,我们可不能混淆了。

  三.应用公式,巩固训练

  师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)

  师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)

  师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))

  师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?

  (出示课件:四个挑战)

  1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?

  为什么?(单位:厘米 图略)

  2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)

  3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?

  4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?

  (图略)

  师:真不错,挑战成功。

  四.收获平台,课外延伸

  师:不知不觉中就要下课了。想一想,这节课你有哪些收获?

  (我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)

  师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?

  (猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)

平行四边形的面积微课教学设计5

  教学内容:

  《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

  教学目标

  1.知识与技能

  1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2)使学生理解转化的思想,初步学会运用转化法来解决问题。

  3)培养学生的合作意识和自主探究解决问题的能力。

  2.过程与方法

  让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

  3.情感态度与价值观

  通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

  教学重点、难点

  教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  教学准备:

  多媒体课件、平行四边形学具等。

  教学过程:

  一、设置悬念激发兴趣

  师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

  [学情预设:摇头或不知道。]

  (出示:中国版图)

  师:请大家仔细观察,山西省近似我们学过的什么平面图形?

  [学情预设:学生根据观察可能会说:四边形或平行四边形。]

  师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

  [学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]

  师:对,这节课我们就一起来研究“平行四边形的面积”。

  (引出课题并板书:平行四边形的面积)

  [设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]

  二、动手操作引发欲望

  1、回忆平行四边形的底和高。

  师:同学们,平行四边形有哪些特征,你们还记得吗?

  [学情预设:

  生1:平行四边形对边平行、对角相等。

  生2:还有底和高。]

  师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

  [学情预设:学生根据不同的高,找到所对应的底。]

  师:由此,你发现了什么?

  生:底要和高相对应。

  师:对,这一点值得注意。

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]

  2、第一次探究

  师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

  (小组活动,教师巡视)

  学情预设:

  生1:直接数。

  生2:间接数。

  生3:沿边上的高剪开。

  生4:沿中间的高剪开。

  生5:沿两边的高剪开。

  师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

  (小组汇报)

  [学情预设:组1:用直接数方格的方法。]

  [问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]

  师:哪个小组和他们的方法不一样?

  学情预设:

  组2:间接数。

  组3:沿边上的高剪开。

  组4:沿中间的高剪开。

  组5:沿两边的高剪开。

  师:由此,你又发现了什么?

  小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

  [设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]

  3、第二次探究

  师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?

  师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

  生:不能。

  师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

  生:有。

  [学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]

  (板书:长方形的面积=长×宽

  平行四边形的面积=底×高)

  师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

  [学情预设:学生汇报自学成果,教师板书字母公式。]

  师:用字母表示平行四边形的面积公式:S=ah

  小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

  即:平行四边形的面积=底×高

  [设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]

  三、联系实际解决问题。

  师:解决课前遗留问题:山西省的面积大约有多大?

  [设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]

  四、课后延伸渗透转化

  师:吉林省近似学过的什么平面图形?

  生:三角形

  师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

  [设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]

  五、板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

平行四边形的面积微课教学设计6

  [教学目标]

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  [教学重点、难点]

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  [教具、学具准备]

  多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

  [教学过程]

  一、复习旧知,导入新课。

  1、让学生回顾以前学习了哪些平面图形。老师根据学生的回答,依次出示相应的图形。

  2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

  师板书:长方形的面积=长×宽

  师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

  二、动手实践,探究发现。

  1、剪拼图形,渗透转化。

  (1)小组研究

  老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

  (2)汇报结果

  第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

  板节课题:平行四边形面积计算

  2、动手实践,探究发现。

  (1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

  (2)学生重新剪拼,互相探讨。

  (3)汇报讨论结果。

  师板书:平行四边形的面积=底×高

  (4)让学生齐读:平行四边形的面积等于底乘以高。

  (5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

  (必须知道平行四边形的底和高)

  课件展示讨论题:平行四边形的底和高是否相对应。

  (6)总结平行四边形面积的字母代表公式:S=ah(师板书S=ah)

  (7)比较研究方法。

  三、分层训练,理解内化。

  课件显示练习题

  第一层:基本练习

  第二层:综合练习

  第三层:扩展练习

  下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  四、课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

平行四边形的面积微课教学设计7

  教学目标:

  1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

  2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

  3、培养学生的合作意识,初步渗透平移和转化的思想。

  教学重点:

  探索并掌握平行四边形的面积计算方法。

  教学难点:

  理解平行四边形面积计算公式的推导过程。

  教具准备:

  一个长方形、一个平行四边形,PPT课件一套。

  学具准备:

  平行四边形、剪刀、三角板。

  一、以旧引新,激起质疑

  1、同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?

  2、老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)

  二、动手操作,探究方法

  (一)利用方格,初步探究

  1、下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!

  2、学生独立数出平行四边形和长方形的面积。

  3、谁来说说你数的结果?学生汇报

  4、你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现?

  你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。

  我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢?

  (二)动手操作,推导公式

  1、动手操作

  a.下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的图形呢?怎么变?

  b.静静地想,想好了吗?

  c.动手操作,把这个平行四边形变成以前学过的图形。

  d.谁来说说,你把平行四边形变成了什么图形,怎么变的?

  2、合作探究

  a.我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么?

  b.小组讨论

  c.汇报。

  3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式用字母怎么表示呢?

  (三)指导点拨,总结方法

  刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

  我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。

  孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!

  例1、读题后独立解答一生板演

  师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗?

  三、解决问题,拓展延伸

  1、练习十五1题。

  2、练习十五3题。

  3、下面两个平行四边形,它们的面积一样大吗?

  4、你能算出芸芸家这块菜地的面积吗?

  四、全课小结,完善新知

  这节课你有什么收获?

  这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!

平行四边形的面积微课教学设计8

  教学内容:

  人教版数学五年级上册第6单元第87-88页。

  教材分析:

  《平行四边形的面积》的教学是在学生初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转的基础上进行的。这部分内容的知识,不仅有利于发展学生的分析能力及转换划归思想,促进学生的空间观念发展,而且也为学习三角形面积、梯形面积等打下良好的基础。

  学情分析:

  在学习《平行四边形的面积》之前,学生已初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转,学生具备了一定的动手操作能力。五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。针对难点因地制宜,结合学生自身的实际情况,动手实践、直观演示法、合作交流;引导学生进行问题探索,通过教学环境的情感渲染,利用情境引出问题,并通过猜想、验证、推导出平行四边形的面积计算公式,使学生在理解的过程中主动的学习,重结果的同时更重过程性的学习,在学习过程中渗透转化的思想,激发学生的创新意识。

  教学目标:

  1.知识与技能:在具体情境中,理解并掌握平行四边形的面积计算公式,能正确计算,并能解决简单的实际问题。

  2.过程与方法:经历数一数,剪一剪,拼一拼的探索过程,培养观察,分析能力,发展空间观念,感悟转化(划归)的数学思想,积累相关活动经验。

  3.情感态度与价值观:感受数学与生活的联系,体会数学的应用价值。

  教学重点,难点:

  教学重点:理解并掌握平行四边形的面积计算公式

  教学难点:理解并掌握平行四边形的面积计算公式,推导出平行四边形的面积计算公式。

  教具准备:

  (1)一些平行四边形卡片

  (2)磁铁

  (3)剪刀

  (4)课件

  教学过程:

  提前将洋葱微课发至家长群,让孩子提前学习,明确学习内容。

  一、创设情境,导入新知

  创设情景:(出示多边形面积主图)从图中你发现了哪些图形?

  提出问题:你会计算它们的面积吗?正方形面积?长方形面积?

  追问:在生活中什么时候要用到计算面积呢?

  预设:比较面积大小、贴瓷砖……

  师:老师也遇到了同样的比大小的问题,请看,老师把花坛请到了这里(出示87页主图)这两个花坛哪一个大呢?

  【设计意图】由一张生活中常见的多边形面积主图来展开,从学生已有知识生活经验来引导学生发现问题,提出问题、分析问题,最后解决问题,感受数学与生活的密切联系,知道生活中什么时候需要计算面积等,引导学生体会数学的应用价值。最后通过比较哪个花坛大来引出今天要学习探索的平行四边形的面积。

  二、探索新知

  (一)借助方格,初步探究。

  猜想:

  预设1:长方形花坛面积大

  预设2:平行四边形花坛大。

  预设3:不确定,要比两个花坛的面积,可是我们不会求平行四边形的面积

  引入课题:我们今天一起来研究——平行四边形的面积(板书)

  1、回忆一下,我们是用什么方法得出长方形的面积计算公式的?

  预设:数方格

  验证:

  2、在方格上数一数,然后填写下表(一个方格代表1m^2,不满一格的都按半格计算。)拿出练习本,写在练习本上,不用画表格。

  3、提问:谁来数一数,告诉大家你是怎么数的?

  4、追问:有没有什么方法能帮助我们数的快一点呢?

  预设:沿平行四边形的高剪一块,拼到另一边。

  5、这种“一剪,一拼”的方法,数学上称为“割补法”。

  (二)渗透转化,进一步探究。

  1、不数方格,能不能计算平行四边形的面积?

  预设:转化成学过的长方形。

  2、渗透思想:他提到了一个数学学习过程中常用到的一种思想方法“转化”思想。把新知识转化成旧知识。

  3小结:刚才我们是用数格子的方法知道的,如果没有方格……(引导学生)

  (三)观察、猜想、验证深入探究

  1、回忆一下,长方形的面积计算公式是?(板书:长方形面积=长×宽)

  长方形面积和谁有关?

  2、提问:长、宽中任意一个变化会导致面积变化吗?

  由此,你们猜测一下平行四边形的面积可能会和谁有关?

  预设1:邻边(如果很多学生说与邻边有关就分组讨论)

  预设2:底和高

  3、演示:拉动它会有什么变化?什么变?什么不变?(拿着一个可以变动的平行四边形)面积变小了,邻边___?底___?高___?周长___?

  4、小结:可见平行四边形的面积和……有关,那么我们能不能用转化的的方法推导出平行四边形的面积?

  推理:

  光说没有说服力,拿出练习本和事先准备好的平行四边形卡片,把推导过程体现出来。把平行四边形转化成学过的图形。

  学生动手(教师巡视)

  (投影展示)

  提问:你是怎么把平行四边形转化成长方形的?(学生上台展示)

  预设:沿高剪开,把三角形向右平移,再拼成长方形。

  师:条理清晰,通过“一剪,一拼”把平行四边形转化成长方形,这种方法叫?

  对了,割补法,利用割补法转化成长方形就能计算面积了。

  5、(课件动画演示)看看如何将平行四边形转化成长方形。

  (四)合作交流,推导出平行四边形面积

  1、原来的平行四边形和转化后的长方形,它们之间有什么关系?平行四边形的面积怎么求?

  预设:

  2、汇报

  平行四边形的底和长方形的()相等。(板书)底→长

  平行四边形的()和长方形的()相等。(板书)高→宽

  这两个图形的面积()。(板书)平行四边形面积=长方形面积

  3、怎样计算平行四边形的面积?

  预设:平行四边形面积=底×高(板书×)

  (五)渗透符号意识,公式符号化

  1、a表示什么?h呢?

  如果用大写字母S表示面积,用字母a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成?

  预设:S=ah(板书)

  2、要求平行四边形的面积要知道什么?

  3小结:到这里的学习,你们知道了什么?

  【设计意图】本环节充分体现了新知识转化成旧知识的“转化”思想。第一通过引导学生回忆推导长方形面积的方法来计算平行四边形的面积,即借助方格,初步探索平行四边形的面积。,经历剪一剪、拼一拼的探索过程,渗透“割补法”。第二进一步探索,在没有方格的情况下,引导学生“转化”,将平行四边形转化成长方形,新知转化成旧知。第三循序渐进,引导学生观察、猜想、验证,借助可以拉动的平行四边形可以直观的让学生感受到什么变了,什么没变,让学生在理解的基础上学习,递进的学习,逐步推导。第四建立在上一步的基础上发展,通过新课程提倡的合作交流的学习方式进行,找出平行四边形与转化后的长方形的关系,并推导出平行四边形的面积计算公式。最后,公式符号化,发展学生的符号思想。

  三、巩固练习

  1、抛出洋葱微课里的题

  2、平行四边形花坛的底是6m,高是4m,它的面积是多少?

  3、89页第2题(注重底与高对应)计算下面每个平行四边形的面积。

  4、90页第6题

  【设计意图】根据学生掌握知识的规律,针对本课的教学目标,我设计的练习题由浅入深,循序渐进。通过这些练习是为了让学生会运用平行四边形的知识去解决简单的数学问题。在第2题练习中发展创新意识,让学生明白“对应关系”即“底”和“高”对应,引导学生在理解的基础上牢固的掌握知识,能根据具体需要迅速再现出来。

  四、课堂总结

  通过今天的学习你有什么收获?你还有什么疑问?

  【设计意图】课堂总结,让学生说一说收获,还有什么疑问,实现知识的系统小结,是为了学生更好的学习和改善教师教学的重要部分。可以系统的知道学生学到了什么,哪方面还需要巩固。为后续教学提供方向。

  五、作业布置

  六、板书设计

平行四边形的面积微课教学设计9

  教学目标:

  使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重、难点:

  探索并掌握平行四边形的面积计算公式及推导过程。

  教具学具

  课件、平行四边形卡片、剪刀、三角板、直尺等。

  教学模式:

  “我能行”四步教学法。(详见文后注)

  教学流程:

  课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?

  预设:老师的年龄是多少?教几年级?

  师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

  生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

  师:想得真好,许老师就是(30)岁。

  师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。

  一、情境导入,确定目标

  师:1.在数学课堂上哪些地方用到了“转化”?

  预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

  看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

  2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

  生:演示方法。

  3.师:为什么把它拼成一个长方形呢?

  预设:学过长方形面积的计算,而且能够拼成长方形。

  这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

  4.刚才的图形“转化”过程,什么变了,什么没变?

  5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

  (1)我会用“转化”的数学思想推导平行四边形的面积计算公式。

  (2)我会用平行四边形面积公式解决实际问题。

  【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

  二、互动展示,生成问题

  师:1.你猜一猜平行四边形的面积会与什么有关?

  预设:长方形、正方形、底、高、夹角、相邻的边等。

  2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。

  3.请带着问题自学。(课件)

  4.四人小组交流一下你是怎样“转化”平行四边形面积的。

  【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

  三、启发思路,引导归纳

  师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

  2.平行四边形的面积怎么算?

  3.板书:平行四边形的面积=底×高

  4.你是怎样推导的?说一下你的操作过程。

  5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)

  6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

  7.这个平行四边形与剪拼的长方形之间有什么关系?

  预设:平行四边形的面积与长方形的面积相等(板书)

  8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

  9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)

  【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

  四、练习检测,拓展链接

  1.练习检测卡一题。

  2.课件:判断、选择题、口答列式。

  3.练习检测卡二、三题。

  4.谈谈你对这节课的收获,好吗?

  拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

  【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

  板书设计:

  (注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)

平行四边形的面积微课教学设计10

  【教学目标】

  1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

  2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  【教学重点、难点】

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

  【教具、学具准备】

  多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

  【教学过程】

  一、创设情境,抽取方法、导入新课

  1、师:同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

  师:老师今天也带来了两个图形,但并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

  学生思考、回答:

  (1)数格子的方法:一样大。

  (2)把第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

  动画演示割补的过程。

  师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地比较它们的面积——这种方法在数学上叫做“割补——转化”法。“转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

  既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积:

  这是个什么图形?(平行四边形)板书课题。

  二、应用方法,动手操作,探究新知

  1、预设问题:

  怎么就能计算出它的面积呢?(学生思考1分钟。)为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1)出示问题:

  师:先看老师给大家的几个提示(师读提示):

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ①平行四边形可以转化成学过的哪种图形?

  ②平行四边形的底和高分别与转化后的图形有什么关系?

  ③怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2)现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?比一比哪个小组最快研究出来。

  (3)小组探究。

  (4)组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  (其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

  (4)师生交流提炼,形成板书:

  师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

  师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

  3、教学例1:

  师:我们利用这个成果来解决一个问题好吗?

  出示例1:

  学生回答,教师板书:S=ah=6×4=24(cm2)

  4、巩固小结:

  通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

  三、分层训练,巩固内化

  1、求下面的平行四边形的面积,只列式不计算:

  (第三个图形计算中提问:还可以怎么计算?用12×9.6行不行?强调底与高的对应)

  2、慧眼识对错:

  (1)一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。()

  (2)平行四边形的底越长,面积就越大。()

  (3)下面平行四边形的面积是:8×5=40(平方厘米)()

  (4)一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。()

  3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,停车位的价格是每平方米5000元,老师一共需要付多少钱呢?

  要计算付多少钱,需要先怎么办呢?(测量长和宽,计算停车位的面积),老师已经测量好了,(出示数据:底3米,高5米)你们帮老师算算钱数好不好?

  学生计算、展示。

  师:谢谢你们帮我算出了应付的钱数,我回家就可以准备了。

  4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪的面积最小?你想到了什么?

  四、课堂小结:

  师:这节课你有什么有收获?

  师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

平行四边形的面积微课教学设计11

  【教学内容】

  义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。

  【教学目标】

  1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。

  2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。

  3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。

  【教学重点】

  平行四边形面积的推导过程、平行四边形的面积公式。

  【教学难点】

  平行四边形到长方形的转化过程。

  【教学关键】

  长方形和平行四边形的对比。

  【教学方法】

  猜想,动手操作,转化。

  【知识基础】

  长方形面积公式的推导过程、长方形的面积。

  【教具准备】

  活动的长方形边框

  【辅助手段】 

  Ppt课件

  【教学过程】

  一、情境导入,揭示课题

  1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)

  (课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)

  我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。

  (板书课题)

  二、探究新知,操作实践

  (一)激发思维,寻求探究策略

  1、要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?

  方法一:数方格

  方法二:将平行四边形转化为长方形

  2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)

  测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?

  3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)

  请同学们拿出学具,四人一小组研究研究。

  学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。

  方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。

  方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。

  无论哪种方法,我们都是把平行四边形转化成长方形。

  4、比较归纳,推导公式

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,

  提问:比较这两个图形,你发现了什么?(形状变了,大小没变)

  学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。

  这个长方形的长与平行四边形的底相等

  这个长方形的宽与平行四边形的高相等

  因为:长方形的面积=长×宽

  所以:平行四边形的面积=底×高

  学生汇报公式,教师板书。同学们在心里默默的记记。

  5、用字母表示公式

  如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?

  S=ah(学生说字母公式,师板书)

  (二)解决问题

  1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。

  用公式验证前面数方格的平等四边形的面积。

  平行四边形花坛的底是6m,高是4m,

  它的面积是多少?

  学生说,师板书

  (三)实际应用

  一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?

  学生自己解答。

  三、智力闯关

  这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。

  (一)有空就填

  1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。

  2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。

  3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。

  (二)明辨是非

  1、平行四边形的面积等于长方形的面积。()

  2、平行四边形的底边越长,它的面积就越大。()

  3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()

  4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()

  四、课堂反思。

  1、学生谈收获。

  2、师生共同总结。

  五、拓展延伸。

  用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。

平行四边形的面积微课教学设计12

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点

  理解公式并正确计算平行四边形的面积。

  教学难点

  理解平行四边形面积公式的推导过程。

  教学方法:

  动手操作、小组讨论、启发、演示等教学方法。

  教学准备:

  1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。

  2、课外延伸思考题。

  3、平行四边形转化为长方形的课件。

  教学过程

  一、创设情境,导入新课:

  1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?

  2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?

  师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)

  二、合作交流,探究新知

  1、数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

  学生讨论,鼓励学生大胆发表意见。

  3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。

  学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

  请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

  教师用课件演示剪——平移——拼的过程。(多种方法)

  4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。可以出示讨论题。

  (1)拼出的长方形和原来的平行四边形比,面积变了没有?

  (2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  (3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,教师归纳:

  我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。

  同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。

  板书:

  平行四边形面积= 底 × 高。

  5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

  板书:S=a×h=ah=ah

  6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  三、分层运用新知,逐步理解内化

  1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)

  3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)

  4、 求下列平行四边形的面积 。

  (2)判断对错:

  师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)

  (3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)

  生读题。

  师:等底等高的平行四边形面积一定相等。

  3. 思考题:你有几种方法求下面图形的面积?

  四、总结全课,深化认识

  通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?

  今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

平行四边形的面积微课教学设计13

  一、教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

  2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。

  4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  二、教学重点、难点及关键点剖析:

  1、重点:平行四边形面积公式的推导及应用。

  2、难点:理解平行四边形面积计算公式的推导过程。

  三、教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、

  四、教学过程:

  创设情境,导入新课

  猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?

  生:算出这两块地的面积,比比就知道了。

  师:那长方形的面积怎么算呢?

  生:长方形的面积=长×宽

  师:平行四边形的面积怎么算呢?

  生摇摇头。

  师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)

  齐读学习目标:

  1、通过操作,能推导出平行四边形的面积计算公式。

  2、会运用平行四边形的面积计算公式解决实际问题。

  自主学习

  在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)

  小组讨论:

  (1)仔细观察、比较表格中的数据,你发现了

  (2)猜想:平行四边形的面积=_________________________

  动手操作,验证猜想

  (1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?

  (2)以小组为单位进行剪拼。

  (3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。

  (4)讨论:

  A、平行四边形转化成长方形后面积变了吗?为什么?

  B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。

  (6)交流汇报

  板书:长方形的面积=长×宽

  ↓↓↓

  平行四边形的面积=底×高

  师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)

  当堂检测

  1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

  出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生独立完成,并展示学生作业。

  2、计算下面平行四边形面积,列式正确的是:()

  A:8×3B:8×6C:4×6D:4×3

  通过做此题,你想提醒大家注意什么?

  3、你能想办法求出下面这个平行四边形的面积吗?

  拓展提升

  下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  1.4cm

  2.5cm

  通过做此题,你发现了什么?

  课堂小结

  说说本节课,你收获了什么?

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  ↓↓↓

  平行四边形的面积=底×高

  S=a×h

  =ah

  =ah

平行四边形的面积微课教学设计14

  教学内容:

  人教版实验教科书五年级数学上册第五单元。

  教学目标:

  1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。

  2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。

  3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。

  教学重点:

  使学生理解和掌握平行四边形面积公式并会应用。

  教学难点:

  理解平行四边形面积计算公式的推导过程。

  教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、三角板。

  教学流程

  (一)创设情境,设疑引入

  谈话:出示两个美丽的花坛(课件呈现)。

  提问:请大家观察一下,这两个花坛哪一个大呢?

  师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?

  然后给出长方形的长和宽让学生计算长方形的面积。

  提问:那平行四边形的面积你会算吗?从而导入新课。

  板书课题:平行四边形的面积

  (设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)

  操作探索,获取新知

  1、数方格感知平行四边形和长方形之间的关系

  (1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)

  (2)汇报交流自己的发现。

  (3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?

  小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

  (设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)

  2、应用“转化”思想,引入割补、平移法。

  (1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)

  (2)精彩展示:要求边讲边操作。

  提问:为什么都要转化成长方形?

  为什么一定要沿着高剪开呢?

  接着电脑演示其它方法,渗透割补、平移法

  (设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)

  3、建立联系,推导公式

  (1)小组合作探索:

  a、原来的平行四边形转化成长方形后,什么变了?什么没变?( = )

  b、拼成长方形的长与原来平行四边形的底有什么关系?( = )

  c、拼成长方形的宽与原来平行四边形的高有什么关系?( = )

  d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )

  (2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

  提问:用字母怎么表示呢?自学课本81页。

  学生回答s=ah(板书)

  提问:s、a、h分别表示什么呢?

  提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

  (设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)

  (二)巩固应用,内化新知

  a、前面的花坛题

  b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?

  (教师巡视,收集典型的错误,强调书写格式,对应的底和高)。

  (设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)

  (四)课堂总结,深化新知

  师:同学们,通过今天的学习,你有什么收获呢?

  (设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)

  课后反思:

  通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。

  ●成功经验

  一、注重采用“自主探究、合作交流”的学习方式。

  尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。

  二、注重数学方法和数学思想的渗透。

  在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。

  三、注重运用现代教学手段辅助课堂教学。

  这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。

  ●失败教训

  一、在教学中个别地方没有给学生留有足够的思考时间。

  比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。

  二、教学中的细节问题注意不够。

  例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。

  总之, 教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!

平行四边形的面积微课教学设计15

  教学目标

  1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

  2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。

  3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。

  4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  教具

  1、多媒体计算机及课件;

  2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

  教学过程

  一、质疑引新:

  1、这图形你认识吗?长方形面积公式是怎样的?宽]这又是什么图形?指出平行四边形的底和高?

  2、谈话引入:你想知道你所做的平行四边形面积有多大吗?

  二、引导探求:

  ㈠提出问题:

  1、用数方格法求平行四边形的面积

  ⑴谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

  ⑵数出方格图中平行四边形的面积。提问:

  A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)

  B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

  ⑶若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

  2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

  3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

  电脑逐步显示:平行四边形的面积=长方形的面积。

  平行四边形的底=长方形的长;

  平行四边形的高=长方形的宽;

  引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

  电脑展示:

  (1)底、高、不变,面积不变。

  (2)底、高改变,面积变化。

  你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

  ㈡推导公式:

  1、小组合作研究:

  长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

  ⑴怎样剪拼才能将平行四边形转化成长方形?

  ⑵转化后的图形与原平行四边形有什么关系?

  (要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

  2、各小组实验操作,教师巡视指导。

  3、各小组交流实验情况:

  ⑴谁愿意把你的转化方法说给大家听呢?请上台来交流!

  ⑵有没有不同的剪拼方法?(继续请同学演示)。

  ⑶电脑演示各种转化方法。

  4、小组合作讨论归纳总结规律:

  ⑴平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶剪样成的图形面积怎样计算?

  ⑷小组上台汇报,指着图形说一次得出:

  因为:长方形的面积=长×宽

  所以:平行四边形的面积=底×高(同位指着图形说)

  7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  ㈢巩固公式:

  刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

  ㈣应用解决:

  下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

  板书:32.6×8.4≈274(平方米)

  答:它的面积约是274平方米.

  (挑一学生的作业投影评讲)

【平行四边形的面积微课教学设计】相关文章:

微课教学设计11-02

微课的教学设计07-24

微课教学设计-范例08-10

人教版平行四边形的面积教学设计12-14

苏教版平行四边形的面积教学设计12-14

平行四边形的面积公式教学设计12-13

平行四边形的面积优秀教学设计12-08

《圆面积》教学设计06-29

五年级《平行四边形面积》教学设计07-02

《圆柱的表面积》教学设计07-22