《用数对确定位置》教学设计

时间:2022-10-20 20:23:57 教学设计 我要投稿

《用数对确定位置》教学设计

  作为一名人民教师,通常需要准备好一份教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写才好呢?下面是小编整理的《用数对确定位置》教学设计,欢迎阅读,希望大家能够喜欢。

《用数对确定位置》教学设计

《用数对确定位置》教学设计1

  教学目标:

  1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学重点:

  会正确用数对表示具体的位置。

  教学难点:

  培养学生的空间观念。

  教学准备:

  每位学生准备红、绿两支水彩笔;练习纸一张。多媒体课件。

  教学过程:

  一、情境引入,激发需要

  提问:能说出我们班中队长坐在哪里吗?

  出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)

  质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)

  提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)

  提问:你认为哪一种方法更好些?(学生中可能会出现两种不同的意见,注意引导学生体会:如果有一个约定,大家都按照这样的规则去做,就不会表达不清了)

  揭示课题:怎样规定横排和竖排呢?这节课我们就来学习一种既准确又简洁的确定位置的方法。板书:确定位置

  二、认识列、行和数对

  1、认识列、行的含义

  师:你的座位在整个会场中还可以用第几列第几行来表示

  板书列行

  师:在你的理解中,什么叫“列”?什么叫“行”?请你比划一下。

  板书:竖排为列横排为行

  电脑显示座位中的列、行

  2、统一定位

  (1)请3位学生上台凭票指出自己找到的位置。并简述是怎样找到的?

  师:个别同学有异议吗?

  情况一:都能正确找到位置。

  师:他们在找座位时有哪些相同的方法步骤?

  (发现他们在数列与行的时候,都很有序。先找列,再找行;确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。)

  情况二:两人找到了同一个座位。

  在矛盾中引出:由于同学们看的方法和角度不同,所以在找位置时,产生了不同的说法,看来得统一定位。确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。请刚才有争议的同学重新找到自己的座位。

  (2)教师指座位,学生口答。

  第1列第1行、第5列第7行

  第11列第7行、第2列第10行

  3、用数对表示位置

  (1)提炼数对

  师:在教室后面坐着几位老师,请你用既准确、又简洁的方法,把老师的位置记录下来。

  反馈:把学生的记录方法一一呈现在黑板上,作为进行比较的素材

  可能出现:a全部用文字b第2列第3行c(2,3)

  52(5,2)

  47(4,7)

  师:这几种的记录方法,有什么相同的地方?(相同点,都是用两个数分别表示列和行。)

  师:这几种方法,你喜欢哪一种?为什么?

  师:大家的方法已经很接近和数学家的方法。数学上用两个数分别表示列和行,中间用逗号隔开,再用小括号把两个数括起来,就叫做数对。

  (2)读法和意义

  读一读数对(2,3)

  数对(2,3)表示什么?这两个数(2,3)分别表示什么?

  (3)完整书写课题

  师:用有顺序的两个数表示平面中的位置,就是今天我们的学习内容。(板书完整课题:用数对确定位置)

  (4)数对的作用

  师:认识了数对,充分让我们体验到数学表达的简约之美。请用数对说说你现在的位置?同桌交流。小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

  三、用数对表示平面图上点的位置。

  1、动物园示意图

  (1)质疑,引入列行标准

  师:这是动物园的示意图,动物园内的大象馆、猴山、海洋馆等不规则地分布着,说说动物园大门的位置?(列行不明,难以描述)

  可用一定大小的方格来统一距离,那些分散的场馆就好似方格中的点了。

  (2)观察起点的位置

  方格中的0表示什么?(既是列的开始,也是行的开始;同时也指示了列从左往右,行从上往下。)

  (3)大门的位置用数对(3,0)表示。

  (4)数对表示大象馆和海洋馆的位置。

  表示第几列,第几行?你是怎样看的?

  (5)学生独立完成

  a、熊猫馆的位置在第()列第()行,用数对表示为(3,5)。

  b、海洋馆的位置在第()列第()行,用数对表示为(5,3)。c、在图上标出下列场馆的位置。

  飞禽馆(0,1)大象馆(0,4)猴山(3,3)

  (6)观察,讨论,深化数对的意义。同时向学生渗透坐标思想。

  选择其中的两个位置进行比较,你发现什么?

  发现一:数对(3,5)和(5,3),同样的两个数写的位置不同,实际的位置不同,因此在写数对时要按照规定先列再行。

  发现二:猴山和海洋馆都在同一行上,因此第2个数都相同。

  师:这一行上还有许多点,它们都可表示(几,3)列数不确定而行数确定,你能用一个数对来概括这一行上的所有点的位置吗?

  发现三:熊猫馆(3,5)和猴山(3,3),数对中的第一个数相同,它们都在同一列上。用(3,y)可以表示这列上所有点的位置。

  四、应用数对,创作图形。培养观察比较,空间想象能力。

  1.根据顶点的数对,在方格中画出三角形。

  (1)想一想

  观察顶点的数对a(1,1)b(3,1)c(1,3),想象这是个什么图形?

  (2)画一画

  根据顶点的数对,在方格中画出这个三角形。

  (3)移一移

  画出这个三角形向上平移5个单位后的图形。说一说又是什么三角形?

  2.根据顶点的数对,在方格中定点连线,找规律(1)根据数对在图上描出各点,标上字母,并顺次连接a、b、c、d。

  a(1,9)b(2,8)c(3,7)d(4,6)

  (2)比较这些数对,你有什么发现?

  列变化,行也随之变化;但列与行的和是不变的。当列和行的和是10时,连接各点是一条线段。如果把这条线段的两端延长,想一想,还有哪些点也一定在这条斜线上?

  五、总结、延伸。

  1、师:今天这节课学了什么?你对数对都了解了哪些?

  2、在直线上确定一个点,只要一个数据;

  在平面上确定一个点,需要两个数据,就是今天我们学的数对;

  在三维空间里确定一个点,也需要数据,需要几个数据?

《用数对确定位置》教学设计2

  教学目标:

  1、通过练习,使学生进一步提高用数对确定位置的能力。

  2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

  教学过程:

  一、基础练习

  下面是某一地区的平面图。

  1、用数对标出环球大厦和购物中心的位置。

  2、图中(11,4)表示的位置是()。

  3、()和()在同一行上。

  4、小明从公园门口出来,到书店该怎样走?

  (1)独立完成解答。

  (2)集体评讲。

  二、提高练习

  1、练习三第5题。

  (1)理解题意,明白“行”“列”表示的意思。

  (2)根据(x,5)这个数对,说说x表示的是列数还是行数?

  根据这个数对能确定什么?它表示的可能是哪个班?

  (3)在小组中说说第(3)小题。

  这里的x,y可能表示哪些数?为什么?

  2、完成练习三第6题。

  (1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。

  (2)在小组中设计交流。

  (3)展示作业,汇报结果。

  你能用数对描述一下自己设计的摆放位置吗?

  你觉得自己设计的如何?优点是什么?

  互相评价:设计是否合理?是否美观?

  3、完成练习三第7题。

  平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)

  第一个怎么变化的?

  独立在书上方格中完成第(3)小题。

  在小组中完成第(4)小题。

  说说顺次连接四个点得到了什么图形?

  4、完成练习三第8题。

  理解题意,简单介绍国际象棋的棋盘。

  棋盘上的列车行分别用什么表示?

  用g2表示白王,和数对表示的方法相同吗?

  完成第(2)小题的填空。

  在小组中互相说说黑车从C6~C2,是怎样前进的?

  三、阅读“你知道吗”

  四、课堂总结

  用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。

  第三单元公倍数和公因数

  第一课时:公倍数和最小公倍数

  教学内容:教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。

  教学过程:

  一、经历操作活动,认识公倍数

  1、操作活动。

  提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

  学生独立活动后指名在实物展示台上铺一铺。

  提问:通过刚才的活动,你们发现了什么?

  引导:⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?

  ⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?

  2、想像延伸。

  提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

  3、揭示概念。

  讲述:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号表示。

  引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索。

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,在小组里交流。可能的方法有:

  ①依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?

  ②先找出6的倍数,再从6的倍数中找出9的倍数。

  ③先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:②和③有什么相同的`地方?哪一种方法简捷些?

  2、明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最小公倍数。

  3、用集合图表示。

  指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、完成“练一练”

  完成后交流:2和5的公倍数有什么特点?

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、练习四第1题。

  提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提呢?

  2、练习四第2题。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、练习四第3题。

  集体交流时说说是怎样找的。

  四、全课小结

《用数对确定位置》教学设计3

  教学内容:青岛版小学数学五年制五年级上册第93~94页。

  教学目标:

  1.结合具体情境认识行与列,初步理解数对的含义。能用数对来表示具体情境中物体的位置。

  2.结合具体学习内容培养观察、推理与表达的能力,渗透“数形结合”的思想,发展空间观念。

  3.经历由实物图到方格图的抽象过程,渗透坐标的思想,发展空间观念。

  4.感受数学与现实生活的联系,养成积极参与数学学习活动的习惯。

  教学重点:用数对表示物体的位置。

  教学难点:在方格图中根据数对来确定位置。

  教学过程

  一、创设情境,激趣导入

  1.播放歌曲《我和你》,提问:这首歌同学们熟悉吗?去年我国成功举办了第29届奥运会,我想同学们肯定非常喜欢这些出色的运动员是吗?今天老师带来了部分运动员的照片,想看吗?(课件出示照片)

  2.这些运动员中,你最喜欢谁,把他的名字写在学习卡上,然后在反面简单描述一下他在屏幕上的位置,我们做个猜猜看的游戏。

  3.读学习卡,同学们猜,(一个人的位置从不同的角度观察会有不同的猜测,让同学们产生疑问)过渡:怎样才能更清楚的更简单的表示出一个人的位置呢?这就是我们今天所要研究的问题(板书课题)

  二、设置疑问,引出数对

  (一)列、行的含义和确定第几列、第几行的规则

  1.咱们先以同学们的座次为例,刚才你们说到的竖排指什么吗?(学生指一指)在数学上称列,从哪开始数,你们有两种数法,习惯上从左往右数。(板书左右)那从观察者的角度,也就是以老师的角度来看,谁是第一列,请起立,第三列、第五列。

  2.横排指什么,数学上称行。从哪开始数,(板书从前往后)谁是第一行,请起立,第三行。

  3.谁站了两次,为什么?

  4.现在你能更清楚的告诉我你在教室内的位置吗?你朋友的位置,你班长的位置。

  (二)、发挥想象,创造符号,渗透“数形结合”思想。

  1.同学们用简短的语言表述了班长的位置,数学讲究简练,那你能用更简练的方式表示班长的位置吗?小组讨论

  2.展示小组的意见,全班评价,找出最简单最清楚的方式。

  小结:你们真厉害,用一对数就表示出了一个人的位置,知道这在数学上叫什么吗?(板书数对)数对表示法是确定位置的一种方法,它是法国数学家笛卡尔发明的,看来同学们又当数学家的潜能。

  3.那现在用数对表示出你在班内的位置,好朋友的位置。

  4.老师说数对,听一听是谁的位置,请你站一下好吗?(3,4)(2,5)(5,2),比较后两个,你有什么发现,(4,Y)怎么回事?(让学生体会数对表示法,两个数字缺一不可)

  5.小结:在用数对表示位置时应该注意什么?

  二、逐步抽象,掌握方法

  过渡:同学们用这么短的时间,就把自己在班级内的位置表示的这么清楚、简单,可能是太熟悉这个班级了,老师带来了我们班的座次表,(课件出示)

  1.怎样确定王红、李娟的位置,(让学生说一说列、行)然后说出数对。

  2.把学生换成圆点,再来找一找王红、李娟的位置。(指名上来指一指)

  3.根据数对在方格图中找位置。

  数学家想了更简单的方式,就是把圆点用横线和竖线连起来,(出示表格),你能看懂吗?再来找一找王红、李娟的位置。(指名上来指一指)

  4.学生在表格上找出这些同学的位置,(3,2)、(4,4)(1,4)、(3,3)、(3,4)、(2,4)、比较一下有什么发现?作为未来的数学家,你想告诉大家什么结论。

  三、学以致用

  刚才我们研究了用数对确定位置,现在回到上课时的游戏中,姚明的位置能更清楚的告诉大家了吗?把你喜欢的运动队员在屏幕中的位置用数对表示出来,再玩猜猜看的游戏。

  四、拓宽视野,总结延伸

  1.用数对确定位置在生活中的应用非常广泛,大家可以在网上查询。

  2.介绍笛卡尔发明数对的故事,进行思想教育

《用数对确定位置》教学设计4

  教学目标

  1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学过程

  一、揭示课题,对比引入

  谈话:今天这节课,我们学习有关确定位置的知识。(板书课题:用数对确定位置)

  出示一排座位图,提问:谁知道小明的位置在哪里?

  出示三排座位图,提问:现在小明的位置在哪里?(第1排第3个)

  讨论:同样是小明的位置,为什么我们的描述方法却发生了变化呢?

  [设计意图:通过引导学生进行对比,让其感受到从一维到二维空间的过渡,拓展学生的空间观念。]

  二、设置冲突,引发需要

  1.激活经验。

  谈话:我们每个人在教室里都有自己的位置,班长坐在哪里?同学们不用手指,能告诉听课的老师吗?

  学生可能回答:第×排第×个,第×组第×个,第×行左边×个,第×列第×个……(教师相应板书)

  2.认识列。

  提问:看黑板上这么多种说法,你有什么感觉?(太乱了,不统一)为了便于交流,需要把表述方法统一一下。我们把竖着排的叫做列。(板书:列)

  屏幕出示坐次图,从左往右依次是第一列、第二列……(课件依次标出座位图上的列数)

  提问:屏幕上的座位哪里是第一列?列数应该从哪边往哪边数?(从左往右数)列从左往右数,是从谁的角度看的呢?

  要求:谁能上来指一指我们教室中的第一列。(学生上台指)先想一想自己的位置在第几列,老师叫到第几列,请相应同学起立。

  3.认识行。

  谈话:竖排叫做列,横排叫做──行。(板书:行)确定第几行一般是从前往后数的。(板书:从前往后数)

  提问:这幅图上第1行在哪里?第3行呢?这里一共有几行?(课件依次在座位图上的行数)

  [设计意图:自由表示班长的位置,让学生感受标准不一所带来的麻烦,引出统一标准的必要性,从而明确列与行的表述方法。通过有意识的引导,消除可能由于观察角度而引发的对列的错误理解。]

  4.引发需要,探寻方法。

  提问:现在能用列和行说说班长的位置吗?(学生可能说:第几列第几行,第几行第几列,教师相应板书)

  课件将座位图改为圆圈图,谈话:我们用圆圈表示每一个同学,请大家用笔记录红色圆圈表示的位置。(快速出示几个表示学生位置的红点,学生来不及记录)

  设问:是老师的速度太快了,还是你们的记录方法不够简捷呢?怎样才能又快又准地记下每个同学的位置呢?同学们要不要再试一次?

  反馈:小军的位置你是怎么记的?(学生的记法可能是:4列3行;3行4列;4,3;3,4;3—4;4—3;……)

  提问:你喜欢哪一种方法,为什么?

  讲解:其实,数学上专门有一种用来确定位置的简捷方法,请将书翻到第15页,看看课本上是怎么表示的?板书:(4,3)。

  提问:书上也是用两个数表示位置,跟我们的写法有什么不同?这样写有一个名称叫数对。(板书:数对)

  提问:数对中的两个数各表示什么呢?你觉得这样规定有什么好处?用数对表示位置要注意什么?

  谈话:这个数对就表示小军的位置,读作“数对四三”。其他几个同学的位置,你会用数对表示吗?

  学生用数对表示小红、小芳、小华的位置。[设计意图:引入数对直接告诉学生也未尝不可,但数对产生的背景及必要性却不能为学生所感受。这里,让学生经历快速记录和优化的过程,从而逼近数对简约、凝练的特质,催生出数对的雏形。这一过程是逐步“数学化”的过程。]

  5.体验唯一 ,加深理解。

  谈话:想一想,你在教室里的位置用数对怎么表示?写在纸上,和你的同桌比较一下,再和你前后的同学比较一下,你有什么发现?

  (1)起立练习。

  依次出示(1,5)(4,2)(6,5)(2,2)(8,3),请这些位置上的同学站起来大声说出自己的位置。

  (2)出示(3,5)、(5,3),学生起立。

  提问:这两个数对有什么相同点?(都由数字3、5组成)有什么不同点?(两个数字3、5组成顺序不一样,表示的位置也不一样)

  (3)依次出示(4,x)、(y,5)、(x,y),学生起立。

  指起立的学生,提问:你为什么起立?是怎么想的?

  [设计意图:当学生初步认识数对后,通过找同一列、同一行学生的位置,让学生初步感悟用数对确定位置的规律。接着安排了写数对、找数对等分层变式练习:任意数对、两个数字相同的数对、颠倒数字位置的两个数对,含有字母的数对,帮助学生进一步理解数对中各个数的意义。此环节层层递进,逐步渗透,以螺旋上升的方式解决了这节课的教学重点。]

  三、理解应用,发展思维

  1.抽象坐标。

  谈话:如果我们用线把这些圆点连起来,再把列和行的起点定为“0”,就可以变成一个方格图(课件动态呈现),它和刚才的圆点图相比更加简单清楚,这样的方格图也叫坐标系,我们到中学会慢慢研究它。在这个方格图上,小强的位置怎么表示?小丽和小刚的位置呢?(学生口答)

  [设计意图:张景中院士曾经说过:“小学生学的是很初等的数学,但是编教材和教学研究要有高观点。”本节课的内容不仅仅是简单地用数对表示位置,更应该建立和初中数学的联系。利用课件演示“实物图——点阵图——方格图—坐标系”的逐渐抽象过程,引导学生初步感悟平面直角坐标系,培养学生的空间观念。]

  2.渗透思想。

  出示:(1,5)、(3,3)、(4,2)。

  谈话:请同学们在方格图中描出下面的点,把这三个点用线连起来,你发现了什么?(形成一条直线)

  启发:不看图形,就看这些数对,你发现它们有什么特征?(行数与列数相加等于6)

  出示:(2,4)、(2,3)。

  提问:下面的两个数对,哪个会在这条直线上?

  谈话:再把这条直线向上平移两格,4个点的位置现在用什么数对表示?你发现了什么?(行数减少了2,列数不变)想一想,如果把这条直线再向右平移两格,各个数对会发生什么变化?(列数增加2,行数不变)

  指出:图形的特征会反映在数对上,数对的特征也会表现在图形中。

  [设计意图:这个环节渗透了数形结合的思想。用代数的方法研究图形,是笛卡尔解析几何思想的精髓。]

  3.理解应用。

  谈话:去年在上海我国承办了第41届世博会。下面我们来看看世博园的园区图(不提供数对),你能用数对表示这4个馆的位置吗?如果给你提供一个数对(标出希腊馆的数对),你能根据希腊馆的位置,写出另外3个馆的位置吗?

  小结:要想确定一个位置,首先要确定列数和行数。

  [设计意图:这一题的设计意在使学生体会到:确定位置必须在二维的平面上给定两个明确的参数,使学生感受平面直角坐标系的本质思想。]

  四、拓展知识,体会价值

  谈话:用数对确定位置不仅在日常生活中有着广泛的应用,在军事、地理等很多领域也会用到,为了描述地球上各点的位置,地理学家建立了经纬线的概念。(课件展示动画介绍经纬线)现在我们就从卫星上找找上海世博园中中国馆的准确位置。

  提问:通过今天的学习,你知道了什么知识?

  谈话:数对给我们的生活带来了方便,但数对的出现却是一件非常偶然的事情。(课件介绍笛卡尔由蜘蛛织网而创造出数对的过程)希望同学们能够向数学家们学习,善于观察,勤于思考,从生活中发现更多的数学问题。

  [设计意图:结合数对介绍经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。数对创造过程的介绍,对学生进行情感态度的教育,并将他们的数学思考引向深入。]

《用数对确定位置》教学设计5

  教学内容

  苏教版课程标准·数学五年级下册第15页。

  教学目标

  1、使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2、使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学过程

  一、设境置疑,产生需要

  1、(课件出示学生座位图)仔细观察这幅座位图,你知道小军坐在哪里吗?(板书:第4组第3个;第3排第4个)

  2、设疑:小军的位置没有变,为什么同学们的说法都不一样呢?

  3、你能具体说一说第4组第3个是怎么看的吗?第3排第4个你们又是怎么看的呢?

  4、揭题:由于同学们看的方法和角度不同,所以在描述小军位置时,产生了不同的说法。那么,怎样才能正确、简明地描述小军的位置呢?今天这节课我们就一起来进一步学习确定位置。(板书:确定位置)

  [设计意图:通过呈现学生比较熟悉的教室里有序排列的座位的场景,激活学生头脑中已有的描述物体位置的经验;然后通过交流,引发学生产生用一致的方式表示位置的需要。]

  二、逐步抽象,掌握方法

  1、列、行的含义和确定第几列、第几行的规则

  (1)认识场景图中的竖排和横排

  ①继续观察上幅座位图,在教室里,竖里面有几排?如果从左往右数的话,这是第1竖排,这是第2竖排……这是第6竖排。

  ②在教室里,横里面又有几排呢?如果我们从前往后数的话,这是第1横排,这是第2横排……这是第5横排。

  (2)认识圆圈图

  ①为了清楚地表示每个同学坐的位置,现在我们把他们坐的位置都用圆圈表示出来。(课件出示)

  ②为了突出小军坐的位置,我们把小军坐的位置用红色圆圈来表示。(课件出示)

  (3)认识列

  ①从这幅圆圈图上,如果从左往右数,现在你还能指一指第1竖排在哪里吗?第5竖排在哪里?第6竖排呢?

  ②揭示:其实每一竖排在数学上我们都把它叫做列。(板书:竖排 列)确定第几列我们一般都是从左往右数的。(板书:从左往右数)

  ③想一想这一列应是第几列?这一列又是第几列?这幅图上一共有几列?(课件依次出示第1列到第6列)

  (4)认识行

  ①刚才我们已经知道每一竖排都叫做列,而每一个横排在数学上我们把它叫做行。(板书:横排 行)确定第几行一般是从前往后数的。(板书:从前往后数)

  ②想一想第1行在哪里?第3行呢?在这幅图上一共有几行呢?(课件依次出示第1行到第5行)

  (5)巩固列和行的认识

  刚才我们已经知道了列和行,请同学们闭上眼睛想一想,我们是怎样规定列和行的?(随学生回答,课件闪动演示)

  [设计意图:先认识场景图中的竖排和横排,然后把具体的场景图逐步抽象成圆圈图,为后面教学作了孕伏和铺垫。在此基础上,教学列、行的合义和确定第几列、第几行的规则,一切显得水到渠成。同时,借助于多媒体课件,形象直观地帮助学生理解规则。]

  2、数对的含义和数对表示位置的方法

  (1)学习用第几列第几行表示位置

  ①从圆圈图上,你能找到第1列第1行的位置在哪里吗?

  ②你现在还能用第几列第几行来描述小军的位置吗?

  ③现在同学们都用第4列第3行来表示小军的位置,看来用第几列第几行的方法来描述小军的位置真好,让我们有了一个统一的说法。

  (2)学习用数对表示位置

  ①揭示:小军的位置是第4列第3行,我们也可以用数对表示。(板书:数对)

  ②猜一猜:既然是数对,你能不能猜一猜有几个数呀?

  ③介绍数对表示位置。

  数对有两个数,我们在表述的时候,应该先表示列数,再表示行数,前后的顺序是不能颠倒的。因为小军的位置是在第4列第3行,所以在这里我们应先写列数4,再写行数3。数对还有它特定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间写上一个逗号,把两个数隔开。完成板书:(4,3),这个数对就表示小军的位置,我们把这个数对读作“四三”。

  ④想一想:数对(4,3)表示什么意思?

  [设计意图:通过让学生找“第1列第1行”的位置这一活动,然后根据圆圈图中小军的位置,有意识地让学生说说小军坐在“第几列第几行”,统一认识。在此基础上,给出用数对表示的方法,结合板书使学生理解数对中的每一个数各表示什么,从而初步理解数对的含义。]

  (3)尝试用数对确定位置

  ①在这幅圆圈图中,你还能找到第2列第4行的位置吗?这一位置用数对该如何表示?这里的2和4又分别表示什么意思呢?

  ②在练习纸上的圆圈图中,任意找一个位置,说一说你找的位置是第几列第几行,用数对怎样表示。

  ③交流:你找的位置是第几列第几行,用数对如何表示?

  ④如果有一个同学坐的位置是用数对(6,5)表示的,你能在圆圈图上很快地圈出他的位置吗?你是怎样想的?

  ⑤在练习纸上写一个数对,让你的同桌在圆圈图上找出相应的位置,并互相说一说这个位置是第几列第几行。

  [设计意图:联系例题中的圆圈图,通过指定用第几列第几行表示的位置,让学生完整地写出表示这一位置的数对;以及根据数对去找某一位置这两个活动,帮助学生加深对数对含义的理解,初步学会用数对表示座位所在的位置。]

  三、联系实际,加深理解

  1、用数对表示教室里的位置

  (1)谈话:刚才我们用数对很快确定了圆圈图上的位置,那么在教室里,同学们的位置是在第几列第几行,用数对怎样表示呢?

  (2)明确教室里的列和行。

  ①如果站在老师的角度来观察同学们的位置,想一想第1列应该在哪里?第5列在哪里?第8列呢?

  ②列我们已经清楚了,那第1行在哪里呢?第4行呢?

  ③请第1列第1行的同学站起来。

  (3)用数对确定位置。

  ①观察一下数学课代表的位置,看看是在第几列第几行,用数对怎样表示?

  ②你的位置在第几列第几行,怎样用数对表示呢?先自己想一想再告诉你的同桌。

  ③猜同学:在我们教室里有个同学的位置用数对表示是(3,4),猜一猜他是谁呀?

  ④猜好朋友:现在你不用告诉大家你的好朋友是谁,你用数对把你好朋友的位置表示出来,让大家猜猜他是谁。

  [设计意图:因为圆圈图中的位置和实际教室里的位置稍有不同,所以教师加强了指导作用。然后,通过用数对描述数学课代表位置、自己位置的活动,以及根据数对猜同学、猜好朋友的活动,让学生结合教室中的位置,进一步巩固对列、行和数对的含义的认识。]

  2、用数对表示装饰瓷砖的位置

  (1)谈话:在生活中的很多现象都用到了数对的知识。(出示练习三第2题瓷砖图)这是小明家厨房的一面墙上贴着的瓷砖,你能用数对表示这四块花色瓷砖的位置吗?

  (2)仔细观察这四块花色瓷砖的位置和表示的数对,你发现什么规律了吗?

  3、国际象棋记录棋子位置的方法

  (1)谈话:数对不仅在生活中有着广泛的应用,在竞技体育中也经常用到数对的知识。(课件出示国际象棋比赛的画面)

  (2)介绍国际象棋(课件依次出示)。

  ①国际象棋的棋盘。

  ②国际象棋表示棋盘方格所在列数和行数的方法。

  国际象棋棋盘上通常用小写字母a~h分别表示棋盘方格所在的列数,用数字1~8分别表示棋盘方格所在的行数。

  ③国际象棋的棋子。

  (3)交流理解国际象棋记录棋子位置的方法。

  ①(出示练习三第8题图)现在棋盘上白王所处的位置用国际象棋专用的方法记为g2,你知道它是用什么方法记录白王的位置吗?这个g2表示什么意思呢?

  ②棋盘上的黑王、黑车、白兵各在什么位置?先说一说,再记录下来。

  ③如果黑马的位置用d5表示,你知道它在哪里吗?如果白马的位置用f7表示,你又知道它在哪里吗?

  4、用数对表示礼堂中的座位

  (1)(课件出示练习三第5题图)找一找在这张位置图上一年级一班的位置在哪里?六年级五班的位置在哪里?

  (2)如果有一个班级所处的位置用数对表示是(□,3),你能确定是哪个班级吗?可能是哪些班级呢?为什么?

  (3)如果老师告诉你,这个班级的位置用数对表示是(2,3),现在你知道是哪个班级了吗?

  [设计意图:练习的形式活泼有趣,富有开放性和人文性,既拓宽了学生的知识面,又能让学生体会数对对确定位置的方法的应用价值。在活跃课堂气氛的同时。更有效地巩固了用数对确定位置这一新知识。]

  四、拓宽视野,全课总结

  1、介绍

  (1)用经线和纬线确定地球上任意一点位置的方法。

  (2)部分城市的地理位置,如:北京在北纬39°57′,东经116°28′;无锡在北纬31°35′,东经120°39′。

  (3)经度和纬度在航海、航天、气象、军事等方面的运用。(课件出示相关图片)

  2、全课总结

  (1)讲述:用经度和纬度确定位置和我们用数对确定位置的道理是一样的。

  (2)课外作业:数对的知识在生活中的运用很广泛,有兴趣的同学课后可以通过上网、看书等方式搜集这方面的资料。

  [设计意图:结合数对介绍地球仪上的经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。布置的作业由课内向课外拓展,可以使学生将书本知识与生活实际进行链接,感受数学与生活的密切联系,将数学思考引向深处。]

《用数对确定位置》教学设计6

  教学内容:

  课程标准实验教材五年级上册第七单元(走进军营——方向与位置)

  教学目标:

  1、结合生活情境,使学生体验用数对确定位置的必要性和简洁性。

  2、在具体情境中,能用数对表示位置,根据数对确定位置,并能在方格图中根据数对确定位置。

  3、引导学生经历由实物图到方格图的抽象过程,渗透坐标的思想,发展学生的空间观念。

  4、体验确定物体位置与生活的联系。

  教学重点:

  用数对表示位置。

  教学难点:

  在方格纸上用数对表示位置。

  教学过程:

  活动一:课前谈话

  同学们喜欢看电视吗?那你们知道在九月份发生一件让中国人扬眉吐气引以自豪的大事?

  看来大家都特别关心国家大事,那你们想不想了解一下咱们的宇航员是怎么确定地球表面的位置,顺利到达预定地点着陆的?那学完这节课你将会了解。今天我们就学习《确定位置》

  活动二:创设情境,揭示课题教师:同学们,暑假中小强和同学参加了少年军校活动,看他们正向想我们走来呢。活动三:抽象位置图,认识数对。

  1、认识行与列

  师:小强在这一排中站在什么位置?

  生1:站在前面数第2个;

  生2:后面数第4个;

  师:很好!谁能说出小强所在横排的位置

  生:左边数第三个右边数第四个

  师:在单独的一排中要想确定小强的位置只需要几个数字就可以了?

  生:一个

  师:小强在整个队伍中的位置还能这样说吗?

  生:不能

  师:谁来说一下小强现在位置?

  生:前边数第二排左数第3个

  生:后面数第4排右数第3个

  师:大家看同一个位置就有这么多说法,给别人介绍起来是不是很麻烦?

  生:是

  师:那我们能不能规定统一一下说法?

  生:能

  师:好!读课本93页,看看能不能找到答案。从自主探索开始!

  师:好!把课本反扣。通过读书你知道了什么?

  生:我知道了:竖排叫做列,横排叫做行。(板书)

  生:我还知道排是从左向右数,行从前想后数。(板书)

  师:你真是个会读书的孩子。还有补充吗?

  师:为了更清楚地表示每个同学的位置,我们可以用一个圆代表一个人,刚才的队列图可以用这样的圆点图来表示。

  师:谁来指一下那是列?

  生:竖排称为列

  师:那是第一列?

  生:最左边上的是第一列。

  师:对!列是从左向右数的,这是第一列,依次是......

  师:谁能指一下那是行年,那是第一行?

  生:横排叫做行,最前面的那排是第一行。

  师:你看的真认真!不错!行从前往后数,这是第一行,依次是第二行......

  2,用列行表示位置

  师:我们规定统一了列和行,谁来说一下小强的位置?

  生:第三列第二行。

  师:不错!你说的很准确。也可以先说行再说列,不过我们习惯都是先说列在说行。

  师:谁会说小刚的位置?

  生:第2列第4行

  师:同意不?

  生:同意

  师:那小青在什么位置啊?

  生:第一列第五行

  师:谁能快速说出小芳的位置?

  生:第五列第一行

  3,认识数对并用数对表示位置

  师:大家真了不起!都会准确的表示位置了!大家看,现在我们是用一句话来第三列第二行表示小强的位置,这样书写起来是不是很不方便?

  生:是!

  师:那能不能把这种表示位置的方法变得简练一些呢?

  生:能

  师:好!读课本94页。

  师:大家声音很洪亮,通过读书你知道了什么?生:我知道了小强的位置可以用数对表示。

  师:很好!那用数对怎样表示呢?

  生:用括号三逗号二表示。

  师:是不是这样?板书(3,2)

  生:是

  师:你也是个很会读书的孩子,我们把(3,2)就叫做数对,不过他不读括号三逗号二,他读做:小强的位置是三二,好!一起和我读:

  师:谁知道3和2表示什么?

  生:3表示第三列,2表示第二行。(板书)

  师:不错!谁能完整的小强的位置是(3,2)表示什么意思?

  生:表示小强的位置是第三列第二行。

  师:你真善于总结!不错!大家看用数对和一句话表示位置那个简单?

  生:数对。

  师:很好!那谁会写数对?

  生:先写列在写行,用括号括起来。

  师:书写数对时,你们觉得应该注意什么?

  生:别忘了写括号。

  生:还有别忘把列和行用逗号阁开

  生:先写列在写行

  师:大家真是个细心人。那小刚的位置怎么用数对来表示?

  生:(2,4)

  师:不错!谁来读一下小刚的位置?

  生:小刚的位置是(2,4)

  师:谁知道表示什么意思?

  生:表示小刚在第二列第四行。

  师:很好!谁来用数对写一下小青小芳的位置

  生:(1,5)(5,1)

  师:咱们一块来读以下他们的位置。

  师;谁来说说表示什么意思?

  生:......

  师:大家说的不错!所以写数对我们一定要注意这些。写时可以从左到右挨着写,也可以写完列和行在括号,但是一定要把列和行用逗号搁开。

  4,抽象出方格图,并会根据数对找位置

  师:如果我们用线把圆点连起来,就变成了一个方格图,大家看方格图中的这个“1”表示什么?2呢(看课件演示)

  生:表示第一列。

  师:那这个“1”呢?

  生:表示第一行。

  师:很会观察,这又多了个“0”,谁知道它表示什么意思?(可以老师告诉)

  师:我们大家都会用数对来表示位置了,那会不会根据小强四人的数对在方格图中找到他们的位置?

  生:会

  师:好!把小强四人的位置在课本94页方格图中表出来,看谁标的又快又对。

  师:谁来上面指给大家看?(演示课件)

  活动四:联系实际,深化理解

  师:大家真了不起!不仅会用数对表示位置,还会根据数对找位置。那你会不会表示你现在所坐的位置

  生:会。

  师:谁来说一下我们现在位置那是列那是行?

  生:横排是行,数排是列。

  师:很好!那是第一列,那是第一行?

  生:指出。

  师:好!现在快速数一下,共有几列几行?

  生:......

  师:好!听我口令:第二列起立!第四列起立!第一行起立。

  师:大家反映真快!快速数出自己所在列数和行数,并把自己的位置写在课堂练习本上。

  师:谁来说一下自己的位置

  生:......生......

  师:现在不在让大家说了,我让大家猜猜他是谁?听清位置(3,2),(3,5)(3,6)。

  生:......

  师:仔细观察这些数对,你发现了什么?

  生:我发现他们都在一排。

  师:很好!大家真善于观察思考。谁在猜猜他们是谁?(2,4)(4,4)(6,4)。

  生:......

  师;观察数对你又发现了什么/

  生:都在同一行。

  师:好!你猜一下他是谁(5,A),

  生;猜不出来。

  师;为什么才猜出来啊?

  生:不知道那个数是几

  师:要确定位置需要几个数啊?

  生;两个

  师:大家猜猜他有可能是谁?

  生:......

  师:大家猜一下他有肯能是谁?(4,A)

  生:......

  活动五:拓展练习

  师:以后开家长会,大家就可以把自己位置告诉爸妈,这样爸妈就可以很快的找到你的位置。为了表扬大家,我准备了小礼物,他们防在不同的位置,谁说出他们的位置,礼物就属于谁了。(出示练习1)

  (1):玩迷宫游戏(课件)

  (2):根据数对猜字:(课件)

  师:大家真了不起,表现真好。把这四句话送给大家四句话:观察生活,积极思考,勇于探索,大胆创造(出示课件)

【《用数对确定位置》教学设计】相关文章:

四年级《确定位置》教学设计06-01

认位置数学教学设计04-02

《数星星的孩子》教学设计06-14

《猜数游戏》教学设计04-29

《用百分数解决问题》教学设计07-01

《整十数加减整十数》教学设计06-12

数一数教学设计09-30

“数的奇偶性”教学设计04-05

《数星星的孩子》教学设计14篇06-23

《百分数的认识》教学设计04-27