比的基本性质教学设计

时间:2024-07-25 13:59:05 教学设计 我要投稿

比的基本性质教学设计

  作为一位杰出的教职工,时常要开展教学设计的准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么问题来了,教学设计应该怎么写?以下是小编帮大家整理的比的基本性质教学设计,希望对大家有所帮助。

比的基本性质教学设计

比的基本性质教学设计1

  教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题

  教学目标:

  (一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;

  (二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。

  教学过程:

  (一)复习旧知识,做好新课铺垫

  1、提问:①什么叫做比?

  ②除法、分数、比之间有什么联系吗?

  根据学生的回答板书。

  被除数÷除数==前项:后项

  2、观察下面的每组题目,你有什么发现吗?

  第一组:12÷4=3

  (12×3)÷(4×3)=3 商不变

  (12÷2)÷(4÷2)=3

  第二组:=3

  ==3 分数值不变

  ==3

  先让学生分组讨论,再组织全班交流。

  根据交流情况适时板书

  被除数÷除数==前项:后项

  商不变性质 分数基本性质

  [评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]

  (二)新课,概括比的基本性质。

  1、再观察一组题目

  例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。

  填写下表,并把比值相等的比填入等式。

  质量/g 体积/cm3 质量和体积的比值

  第一瓶 4 5

  第二瓶 16 20

  第三瓶 50 50

  第四瓶 40 50

  ( ):( )=( ):( )=( ):( ) }比值不变

  1、学生独立填写后。

  2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?

  学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。

  引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)

  问:为什么比的后项不能为0?指出:比的后项相当于除数或分母。除数和分母不能为0,所以比的后项也不能为0。

  3、上面三个相等的比哪个更简单一些?

  学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。

  (三)利用比的基本性质化简比

  例4:把下面各比化成最简单的整数比。

  (1)12:18 (2) (3)1.8:0.09

  讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?

  根据学生的回答,整理后板书。 板书后追问:

  12:18=(12÷6):(18÷6) 为什么要同时除以6?

  =2:3

  =(×12):(×12) 为什么要同时乘以12?

  =10:9

  1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?

  =180:9

  =20:1

  小结:化成最简单的'整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。

  [评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]

  四、沟通联系,深化认识

  1、指导完成“练一练”

  做第1题。学生独立填完后,要求说说是怎样想的?

  做第2题。学生黑板上板演,集体订正时说出做每道题的理由。

  2、指导完成练习十三第6~9题

  做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。

  做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。

  做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。

  做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。

  五、课堂总结:

  今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?

  教学评析:

  1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的基本性质,由于学生已经知道了商不变的性质和分数的基本性质;又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。

  2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。

  3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。

比的基本性质教学设计2

  教学目标

  1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

  3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

  教学重点使学生理解分数的基本性质。

  教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教学过程

  一、故事情景引入

  同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?

  好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

  同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

  讨论完了请举手。

  生甲:“我觉得不公平,小红分得多。”

  生乙:“我觉得小明分得多。”

  生丙:“我觉得公平,他们三个分得一样多。”

  师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

  二、新授

  师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

  请你们把这三张圆片叠起来,比一比大小,看看怎么样?

  生:“三张圆片一样大。”

  1.师: “ 下面我们就用三张一样大的`圆片代替月饼,象李奶奶一样来分月饼了。”

  首先,请在第一张圆片上表示出它的1/3;

  再在第二张圆片上表示出它的2/6;

  然后在第三张圆片上表示出它的3/9。

  好了,大家动手分一分。(教师巡视指导)

  2. 师:“分完了的请举手?

  老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

  下面请哪位同学说一说,你是怎么分的?”

  生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

  生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

  师:“那九分之三又是怎么得到的呢?大家一起说。”

  生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”

  (学生说的同时,教师操作,分完后把圆片贴在黑板上。)

  3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”

  小结:原来三个圆的阴影部分是同样大的。

  师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

  生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

  师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

  生甲:“通过图上看起来,这三个分数应该是一样大的。”

  生乙:“这三个分数是相等的。”

  师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

  4. 研究分数的基本规律。

  师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

  生甲:“三个分数的分子分母都变了,大小没变。”

  师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

  第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

  生乙:“它的分子分母都同时扩大了两倍。”

  师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

  再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

  教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

  学生发言

  小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

  5. 深入理解分数的基本性质。

  师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

  师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

  齐读分数的基本性质,并用波浪线表出关键的词。

  生甲:我觉得“零除外”这个词很重要。

  生乙:我觉得“同时”“相同”这两个词很重要。

  师:想一想为什么要加上“零除外”?不加行不行?

  让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

  教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

  三、应用

  1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

  2.学生练习课本例题2,两名学生在黑板上做。

  3.学生自己小结方法。

  4.按规律写出一组相等的分数。

比的基本性质教学设计3

  教学目标:

  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

  2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

  3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  教学重点:

  探索并掌握比例的基本性质。

  教学难点:

  根据乘法等式写出正确的比例。

  教学准备:

  多媒体课件

  整体设计说明:

  本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

  教学过程

  一、旧知铺垫导入。

  1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  2、比和比例有什么区别?

  【设计意图】

  注重从学生已有的知识出发,为新课做好铺垫。

  二、自主探究

  过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

  【设计意图】

  组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

  三、反馈练习。

  指出下面比例的外项和内项。(投影出示)

  先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

  【设计意图】

  这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

  四、探究比例的基本性质

  (1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

  (2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

  (3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

  (4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

  【设计意图】

  这一环节我根据学生好奇的'心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

  五、巩固练习

  1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

  2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

  (学生独立完成后,用展示台展示)

  3、根据比例的基本性质,在( )里填上适当的数。(投影出示)

  六、全课总结:

  这节课你有什么收获。

  【设计意图】

  关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

  七、拓展练习:把下面的等式改写成比例。

  3×40=8×15

比的基本性质教学设计4

  教学内容:苏教版小学数学第十册第95页至97页。

  教学目标:

  知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

  情感目标:让学生在学习过程当中养成互相帮助、团结协作的良好品德。

  教学准备:圆形纸片、彩笔、各种卡片。

  教学过程:

  一、创设情境,激发兴趣

  孙悟空有3根一模一样的甘蔗,小猴子贝贝、佳佳、丁丁看见了,一哄而上,叫嚷着要吃甘蔗。孙悟空说: “好,贝贝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”贝贝、佳佳听了,连忙说:“孙大圣,不公平,我们要分得和丁丁的同样多。”孙悟空真的分得不公平吗?(学生思考片刻)

  【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】

  二、动手操作 、导入新课

  师:我们也来分分看。(学生拿出准备好的圆形纸片。)师:我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想要一块,而且大小要是第一块饼的一半,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?我现在想要两块,而且大小要跟刚才给我的饼一样大,你又能做到吗?用分数怎样表示呢?我如果想要四块,大小跟前两次给我的一样,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。

  【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

  三、观察对比, 由“数”变 “式”

  你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(==)(从这里你能看出,孙悟空分甘蔗,分得公平吗?)

  四、概括分析,由“式”变 “语”

  ⒈观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先研究分数的分子、分母是怎样变化的。

  ⒉先从左往右看,是怎样变为与它相等的的?

  (1)分母乘2,分子乘2。

  根据分数的意义,""表示把单位"1"平均分成2份,取其中的1份,而现在把单位"1"平均分成4份,也就是把原两份中的每一份又平均分成2份, 所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==

  即原来把单位"1"平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。

  (2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==

  (3)谁能用一句话说出这两个式子的变化规律?

  ⒊再从右往左看

  (1) 是怎样变化成与之相等的的?

  原来把单位"1"平均分成4份,取其中的2份,现在把同样的单位"1"平均分成2份,即把原来的每两份合并成 1份,现在要取得跟原来的同样多,只需取几份?[2÷2=1(份)]也就是现在把平均分的份数和取的份数都缩小了2倍,得到,分数的大小没有变。

  ==

  (2) 又是怎样变成的`?(把平均分的份数和取的份数都缩小了4倍。)

  ==

  (3)谁能用一句话说出这两个式子的变化规律?

  ⒋综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?

  ⒌这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。

  (1)理解概念。

  学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

  (2)瘃木鸟诊所。(请说出理由)

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )

  分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )

  ⒍小结。

  从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

  【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】

  五、巩固练习

  ⒈卡片练习:

  ⒉做P96“练一练”1、2。

  ⒊趣味游戏:

  数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。

  要求:第一排是分数值等于的,第二排是分数值等于的,还有一位同学是指挥,他是谁?你是怎样想的?

  【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

  七、布置作业

  做P97练习十八2。

比的基本性质教学设计5

  教学要求

  ①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  ②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。

  教学重点理解分数的基本性质。

  教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

  教学过程

  一、创设情境

  1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?

  3.填空。

  1÷2=(1×2)÷(2×2)==。

  二、揭示课题

  让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

  随着学生的回答,教师板书课题:分数的基本性质。

  三、探索研究

  1.动手操作,验证性质。

  (1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

  (2)观察比较后引导学生得出:==

  (3)从左往右看:==

  由变成,平均分的份数和表示的份数有什么变化?

  把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

  把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  (4)从右往左看:==

  引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

  板书:====

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

  (6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

  2.分数的基本性质与商不变的性质的比较。

  在除法里有商不变的性质,在分数里有分数的基本性质。

  想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3.学习把分数化成指定分母而大小不变的分数。

  (1)出示例2,帮助学生理解题意。

  (2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

  (3)让学生在书上填空,请一名学生口答。教师板书:

  ====

  4.练习。教材第108页的做一做。

  四、课堂实践。

  练习二十三的1、3题。

  五、课堂小结

  1.这节课我们学习了什么内容?

  2.什么是分数的基本性质?

  六、课堂作业

  练习二十三的第2题。

  七、思考练习

  练习二十三的第10题。

  教学反思:

  “分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。

  这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的`基础上进行的,我是这样设计教学的:

  1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。

  2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。

  3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

  4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。

比的基本性质教学设计6

  教材分析

  1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。

  2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。

  学情分析

  学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。

  因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。

  教学目标

  经历探索分数基本性质的过程,理解分数基本性质。

  能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  教学重点和难点

  理解分数基本性质,能运用分数基本性质转化分数。

  教学过程

  一、复习导入

  二、探究新知

  实践操作,探究规律

  观察发现:初步概括分数基本性质

  括归纳分数基本性质

  三、课堂练习

  四、课堂小结

  出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”

  提出问题: 这些分数都相等吗?

  观察这组相等的分数,你发现了什么?把你的发现说给同伴听。

  分子、分母都乘或除以一个数,这个数可以是0吗?为什么?

  1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4

  通过这节课的学习、你学会了那些知识

  口答

  小组讨论

  拿出准备好的圆形纸片,折一折,画一画、涂一涂

  小组讨论、交流

  小组讨论、交流

  做练习,完成后集体交流。

  说说,读分数基本性质

  复习旧知,为学习新知识作铺垫。

  将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。

  让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。

  引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。

  在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。

  让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。

  对本节课的所学知识的回顾,及所学知识点的总结。

  板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的`倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。

  教学反思:

  分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。

  在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。

比的基本性质教学设计7

  教学内容:

  苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。

  预设目标:

  1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。

  2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。

  教学重点:

  探索、发现、归纳和理解分数的基本性质。

  教学过程:

  一、导入

  猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。

  二、学习新知

  1、提供例证

  (1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?

  板书:1/3=2/6=3/9(得出三个相等的分数)

  (2)学生折纸找与1/2相等的分数。

  你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?

  展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16

  2、诱导探索

  提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?

  3、探究新知

  (1)独立思考或小组交流。

  (2)探究验证。

  你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?

  教师根据学生的回答进行板书。

  4、揭示结论:出示分数的基本性质的内容,并揭示课题。

  5、深究结论:

  (1)在分数的基本性质中,你认为哪些字词比较重要,为什么?

  (2)齐读并理解记忆分数的基本性质。

  三、多层练习

  1、填一填。(在○里填运算符号,在□里填数或字母)。

  4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14

  5/8=5○□/8○67/12=7○□/12○□

  2、判断。

  3/4=3+4/4+4()12/15=12÷n/15÷n()

  5/25=5×5/25÷5()5/6=25/30()

  四、课堂作业:

  1、第62页“练一练”2。

  2、第63页第3题。

  3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?

  反思

  “分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,

  从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的`基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:

  1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。

  3、让学生在多层练习中巩固深化。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

  反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

比的基本性质教学设计8

  教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题

  教学目标:

  1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

  2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

  3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

  教学重点和难点 :

  1.理解并掌握比例的基本性质。

  2.探究、发现比例的基本性质。

  教学准备:多媒体课件

  教学过程:

  一、复习旧知

  1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。 2.师:如何判断两个比能否组成比例?生:化简比、求比值。

  3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为 4∶8 = 1∶2

  3∶6 =1∶2

  所以 6∶10 = 9∶15 生2: 因为 20∶5 = 4∶1

  28∶7 = 4∶1

  所以 20∶5=28∶7.

  (学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

  [设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

  二、探究比例的基本性质 1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:?把原来的三角形按几比几来缩小的?

  ?两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。 2.认识比例的项

  (1)观察这几组比例,它们有什么共同点?

  说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。 (2)结合6:3=4:2具体说一说

  在比例6:3=4:2中,组成比例的四个数“

  6、

  3、

  4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的'两项“3和4”叫作比例的內项。

  (3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

  3.探究比例的基本性质

  认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

  (2)6×2=3×4,两个外项的积等于两个內项的积。 4.验证 是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

  (1)与同桌每人写出一个比例,交换验证。

  (2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)6.小结

  其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?

  (2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。 8.教学“试一试”

  (1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

  (2)应用比例的基本性质判断能否组成比例

  (3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

  三、巩固练习

  1.完成“练一练”第1题。 (1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。

  追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

  学生独立完成,教师巡视。

  交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?

  2、练习七第2题

  (1)下面四个数

  5、

  7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,然后观察能写出的有什么规律?

  说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

  (3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

  3.任意从1-10中,写出4个数,判断能否组成比例?

  与同桌合作完成。一个写,另一个判断。 4.我是小法官,对错我来判。

  (1)在比例中,两个外项的积减去两个内项的积,差是0。 ( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。 ( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。 ( ) 5.完成“练一练”第2题

  (1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。 (2)学生独立完成第2小题。

  四、全课总结

  今天我们学习了什么内容?你有什么收获?

比的基本性质教学设计9

  教学目标:

  结合趣味故事经历认识分数的基本性质的过程。

  初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

  经历观察、操作和讨论等学习活动,体验数学学习的乐趣

  教学重点:理解掌握分数的基本性质。

  教学难点:归纳分数的性质。

  学生准备:长方形纸片。

  一、创设故事情境,激发学生学习兴趣并揭示课题。

  编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?

  让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。

  二、小组合作,探究新知:

  1、动手操作、形象感知

  出示课件,让学生观察讨论图中分数的涂色部分是多少?

  A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?

  B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?

  C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。

  2、观察比较、探究规律

  (1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。

  (2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

  (3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题

  (4)通过从左到右的观察、比较、分析,你发现了什么?

  使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。

  【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】

  3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?

  观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:

  先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?

  4、归纳规律

  提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?

  学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的'数﹙0除外﹚,分数的大小不变,这是分数的基本性质”

  6、小结

  同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

  【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】

  四、巩固强化,拓展应用

  多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。

  五、游戏找朋友。

  六、布置作业:

  在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。

比的基本性质教学设计10

  一、教学目标

  1.知识与技能目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

  2.过程与方法目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

  3.情感态度价值观目标:通过教学,使学生养成与人合作的意识,并能与他人互相交流思维的过程和结果。

  二、教学重难点

  重点:理解比的基本性质,掌握化简比的方法。

  难点:理解化简比与求比值的不同。

  三、教学过程

  尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是比的基本性质,下面我将正式开始我的试讲。

  上课,同学们好,请坐。

  【导入】

  同学们,你们都喜欢看名侦探柯南吗?这一天柯南又破案了,我们一起来看一看:

  某珠宝店发生了一起失窃案。小偷在现场只留了一个脚印,柯南根据脚印的长为25cm,就果断推断出了小偷的身高是175cm。

  你们想知道他是如何推断出来的吗?原来根据科学的验证,人的脚长比人的身高等于1:7,你们知道柯南到底运用了怎样的数学知识来破获此案的呢?

  想不想成为像柯南一样的小神探老师,相信通过这节课的学习你们能了解其中的奥秘,这节课就让我们一起走进数学王国,去探究比的意义。

  【新授】

  活动一:

  上节课我们一起认识了比,谁来向大家分享一下比到底代表着怎样的意义呢?请你来说,对学过的知识掌握的非常扎实,请坐。两个数的比表示两个数相除。那我们一起来看一看这个6:8就等于对,6÷8等于6/8,能够约分等于3/4,所以比值是3/4。我们带来看一看12 : 16等于12÷16,所以比值是12 / 16约分3/4。

  我们一起看一看,这两个比它们之间有什么区别和联系呢?请你来说观察的非常细致,它们的比值相等,谁还有别的发现,请你来说。真是一个爱动脑筋的好孩子,请坐。6:8,前项和后项都乘2,就变成了12 : 16。

  同学们还记得我们之前学过的商不变的规律吗?谁来说一说。请你来说。说的非常准确,请坐,被除数和除数同时乘或除以一个不为零的数,商不变。那我们比如6÷8被除数和除数同时乘2,也就是6x2÷括号里面的8x2等于12÷16。同样的,我们的被除数和除数同时除以2,也就是6÷8,等于(6÷2)÷(8÷2)=3÷4

  活动二:

  那我们比中是否有类似的规律呢?我们一起来探究一下请同学们以四人为一组思考并注意以下几个问题,根据比与除法之间的关系,以及除法商不变的规律,来思考6:8与12 : 16之间有怎样的关系?二6:8与3:4之间又有什么关系呢?你还有什么发现?带着这几个问题,先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来自于老师,看哪个小组的发现又多又好。开始。

  老师看同学们都已经做的很端正了。哪位同学愿意向大家分享一下你们小组的讨论成果?老师看一组的同学手举的像小树林一样,1#3同学请你来说。思路非常清晰,请坐。

  利用比和除法的关系来研究6÷8写成比的`形式,就是6:8。而(6x2)÷(8x2)写成比的形式就是按括号里面的6×2:括号里面的8x2。又因为我们两个数的比表示两个数相除,而它们之间是相等的关系,除法算式是相等的关系,所以比值也相等,我们用等号来连接。接下来继续,12÷16写成比的形式就是12 : 16。同样他们除法算式是相等的关系,由此得到它们之间的比值也是相等的,所以用等号来连接。

  其他小组还有不同的发现吗?二组同学请你来说。说的非常有条理,请坐。6÷8写成比的形式,就是6:8而6÷2,除以括号里面的8÷2,写成比的形式就是括号里面的6÷2,比括号里面的8÷2。又因为这两个除法算式结果相同,也就是啊,它们的比值是相等的,所以用等号来连接。最后3÷4用比的形式就是按3:4,同样比值相等,我们继续用等号来连接。

  我们一起仔细观察一下我们刚刚的探索的过程,你有哪些发现?又能得到怎样的结论呢?谁来试一试?请你来说多么了不起的发现,同学们掌声送给这位同学。

  比的前项和后项同时乘或除以一个相同的数,比值不变。那同学们想一想,这个相同的书能为零吗?对呀,当然不能为零,因为在除法算式中,除数不能为零。同学们可真棒,这么快就探索出了比的这么重要的规律。其实这就是我们这节课所要学习的内容,比的基本性质。

  活动三:

  刚刚我们是根据比和除法之间的关系探索比的基本性质,你能根据比和分数的关系研究比中的规律吗?

  同桌之间相互合作,来试一试。老师看同学们都已经探索完了,那你们对比的基本性质理解的怎么样啦?在生活中我们根据比的基本性质,可以将比化成最简的整数比,前项和后项只有公因数1是最简单的整数比。

  观察一下黑板上这些内容,以上就是本节课所要学习的比的基本性质。

  【巩固练习】

  接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕。

  神舟五号搭载了两面联合国国旗。你也是啊,长15cm,宽十厘米,另一面长180cm,宽120cm。那这两面联合国国旗长和宽的最简整数比分别是多少呢?同学们赶紧来算一算。老师看,同学们都已经完成了,谁来说一说你是如何计算的?

  请你来说思路非常清晰,请坐,长与宽的比就是15 :10。因为15和十的最大公约数是五,所以前项和后项同时除以五,等于3:2,这就是它们的最简整数比。而180 : 120,两个数之间的对大姑约说啥60,所以前项和后项同时除以60。也得到了最简整数比是3:2。

  看来这么简单的问题已经难不倒大家了,我们再来看一看1/6:2/9,求它的兑奖比谁来说一说你的思路。

  请你来说。说的非常清晰,请多因为分母六和九的最小公倍数是18,所以同时两边前项和后项同时乘18。得到最简比是3:4。

  那0.75 :2呢?谁来说一说你的想法?请你来说小脑袋可真聪明,请坐。先将0.75化为整数,小数点儿,向右移动两位乘100,所以前项和后项同时乘100,变成75 : 200。

  然后再将它们化简为最简单的整数比。也就是说,当一个比的前项和后项不是整数时,我们要先将它化为整数,再化为最简的整数比。看来同学们对这节课的知识掌握的非常扎实了。

  【课堂小结】

  不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?

  班长你手举得最高你来说,他说啊通过本节课学习了比的基本性质,也就是比的前项和后项同时乘或除以一个相同的数,比值不变,0除外。看来啊本节课上特听讲非常认真,请坐!同学们在本节课上听讲非常认真,表现得都非常积极,老师给大家点一个大大的赞,希望同学们继续保持!

  【作业布置】

  那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识测量一下书桌的长宽,看一看他们的比值是多少。下节课一起来交流讨论一下。

  本节课就先上到这,下课,同学们再见!

  尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

比的基本性质教学设计11

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点: 理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天 第二天

  运输次数 2 4

  运输量(吨) 16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少? (16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的`比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

比的基本性质教学设计12

  教材分析

  本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。

  学情分析

  在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。

  教学目标

  1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。

  2.经历在实际情境中化简比,体会化简比的必要性。

  3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的.理解。

  教学重点和难点

  重点:学生掌握比的基本性质,并正确地化简比。

  难点:灵活应用比的基本性质化简比。

  教学过程

  一、情景激趣,提出问题

  1、出示例3的表格

  2、分析表格中的数学信息和数学问题,并解决这些数学问题。

  3、分析、讨论表格中的数据,并尝试把表格中的比分类。

  小结:我们可以把比值相等的比分为一类。

  二、小组合作,探究新知

  1、讨论一:如果第五瓶溶液的质量和体积的比值也是4/5,你觉得它的质量和体积的比会是几比几呢?为什么?

  2、讨论二:可以写出多少个比值是4/5的比呢?

  3、讨论三:小组用比的基本性质解释一下,第一瓶、第二瓶、第四瓶以及第五瓶液体为什么分为一类/这些比中哪一个最简洁?

  三、尝试运用,解决问题

  先尝试独立完成“练一练”,再在小组内交流方法。

  四、全课总结

  师:通过这节课的学习,你有什么收获?

比的基本性质教学设计13

  1.教材简析

  《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

  2.教材处理

  以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。

  设计意图:

  本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。

  1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。

  2、从故事情境中提出问题,体现数学来源于生活。

  3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。

  4、从几组分数中分析,找到分数的`基本性质,从而初步建立数学模型。

  5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、

  6、在游戏活动中对数学知识进行拓展运用。

  教学目标

  1.知识与技能

  (1)经历探索分数的基本性质的过程,理解分数的基本性质。

  (2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2.过程与方法

  (1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。

  (2) 培养学生的观察、比较、归纳、总结概括能力。

  (3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

  3.情感态度与价值观

  (1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

  (2)体验数学与日常生活密切相关。

  教学重点

  理解分数的基本性质

  教学难点

  能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

  教学准备

  师:电脑课件 学生:圆纸片 长方形纸

  教学步骤:

  一、故事引人,揭示课题。

  1.教师讲故事。

  话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”

  唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?

  [ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

  2、组织讨论,动手操作。

  (1)小组讨论,谁分的多

  (2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。

  (3)比较涂色部分的大小,有什么发现,得出什么结论。

  既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (4)教师演示

  3、教学例1

  (1)引导比较。

  师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

  你知道其中哪些分数是相等的吗?

  根据学生回答板书:1/3=2/6=3/9

  师追问:你是怎么知道这三个分数相等的?(图中观察出来的)

  (2)师演示验证大小。

  (3)完成“练一练”第1题

  学生先涂色表示已知分数,再在右图中涂出相等部分。

  完成填空后,说说怎么想的。

  4、教学例2。

  (1)组织操作。

  师:取出正方形纸,先对折,用涂色部分表示它的1/2。

  学生完成折纸、涂色。

  师问:你能通过继续对折,找出和1/2相等的其它分数吗?

  学生在小组中操作,教师巡视指导。

  学生展开折法并汇报,可能出现的方法有:

  连续对折两次,平均分成4份。如图:

  1/2=1/4

  ②连续对折三次,平均分成8份。如图:

  1/2=4/8

  ③连续对折四次,平均分成16份。

  师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?

  得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

  板书:1/2=2/4=4/8=8/16=16/32……

  (2)发现规律。

  师:你有什么发现?(如学生观察有困难,可进行以下提示)

  ①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?

  学生观察、思考,在小组中交流。

  师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?

比的基本性质教学设计14

  教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.

  教学目标:

  知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

  能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

  情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:理解比例的意义和基本性质.

  教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

  教学准备:课件

  教学过程:

  一、激趣导入

  1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

  2、请同学们看大屏幕,课件出示P32页四幅图。

  二、探究新知

  1、比例的意义

  师问:

  ①这四幅图中有什么共同的事物?(齐说)

  ②这四面国旗出现在什么场合或什么地点?(指生回答)

  ③这四面国旗的长与宽分别是多少?(指生回答)

  ④这四面国旗的大小相同吗?

  说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。

  ⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)

  ⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)

  师问:

  ①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。

  那么我们能用什么符号可以把它们连接成等式?生:等号

  谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40

  ②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40

  ③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)

  师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)

  师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)

  师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  出示板书:表示两个比相等的'式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义

  问题:

  ①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)

  ②判断两个比能不能组成比例,关键要看什么?

  ③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)

  我们已经了解了比例的意义,下面我来考一考大家:

  课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。

  2、比例各部分名称

  师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?

  学生回答上面的问题,教师课件演示。

  做一做:指出下面比例的内项和外项(课件出示)

  4、5∶2、7=10∶6240/160=144/96

  3、比例的基本性质(课件出示)

  观察:2、4∶1、6=60∶40

  思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)

  用下面的比例验证你的发现:

  6∶10=9∶158∶2=20∶5

  你能用一句话把发现的规律说出来吗?(找3名同学回答)

  下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)

  师:看大屏幕(课件出示)2、4/1、6=60/40

  问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?

  指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件

  演示2、4/1、6=60/40→2、4X40=1、6X60

  4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?

  课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?

  讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。

  因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5

  5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示

  6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?

  生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。

  三、巩固新知(课件出示)

  做一做,相信你能行!

  1、判断

  ①10∶5=2是比例。()

  ②在比例里,两个外项的积与两个內项的积的差是O、()

  2、填空

  ①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()

  ②2:9=8:()

  3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)

  四、通过这节课的学习,说说你有什么收获或学到了那些知识?

  五、课后作业:搜集生活中的比例,看看比例在生活中的作用?

  板书设计比例的意义和基本性质

  2、4:1、6=3/260:40=3/2

  2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。

  2、4:1、6=5:10/32、4;1、6=15:10

  5:10/3=15:105:10/3=60:40

  60:40=15:10

  2、4X40=96在比例里,两个外项的积等于两

  1、6X60=96个内项的积。这叫做比例的基本性质。

  《比例的意义和基本性质》教学反思

  本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。

  教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。

  在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。

  习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。

  通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。

  我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。

  本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。

比的基本性质教学设计15

  教学内容:

  义务教育课程标准实验教科书人教版数学六年级下册。

  教学目标:

  1.理解和掌握比例的意义和基本性质。

  2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

  3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。

  教学过程:

  一、认识比例的意义

  1.出示小红、小明在超市购买练习本的一组信息。

  (1)根据表中信息,你能选出其中两个量写出有意义的比吗?

  (学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)

  (2)算算这些比的比值,说说你有什么发现。

  (学生说出自己的发现,教师用“=”连接比值相等的两个比。)

  (3)说说什么叫比例。

  (学生各抒己见,师生共同归纳后板书:比例的意义)

  评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

  2.即时训练。

  A.判断下面每个式子是不是比例,依据是什么?

  (1)10∶11(2)15∶3=10∶2

  a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。

  b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

  c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?

  评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

  3.教学比例各部分的名称。

  (1)引导学生读教材(相关内容),认识比例各部分名称。

  (2)集体交流。(教师板书:内项、外项)

  (3)把比例写成分数形式,指出它的内、外项。

  (4)任意写一个比例,同桌相互说一说比例各部分的名称。

  二、探究比例的`基本性质

  1.填数。

  (1)出示比例8∶( )=( )∶3。想一想,这两个空可能是哪两个数。

  〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕

  (2)观察思考:在填这些数的过程中,你有什么发现?

  (这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)

  (3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)

  A.先验证黑板上的比例式,再验证自己写的比例式。

  B.概括比例的基本性质。同桌相互说一说比例的基本性质。

  (4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)

  评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。

  2.即时训练。

  应用比例的基本性质,判断下面的两个比能否组成比例。

  3.6∶1.8和4∶24∶9和5∶10

  小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。

  三、巩固新知,解决问题

  1.猜数游戏。

  在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?

  3∶5=6∶( )( )∶5=6∶( )3∶5=( )∶( )

  2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)

  利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)

  评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。

  总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。

【比的基本性质教学设计】相关文章:

《比的基本性质》教学设计08-17

《比例的基本性质》教学设计09-27

分数的基本性质教学设计05-11

《分数基本性质》教学设计11-10

《分数的基本性质》教学设计11-22

分数的基本性质教学设计10-15

《分数的基本性质》教学设计09-12

[优秀]《分数的基本性质》教学设计11-23

[优秀]分数的基本性质教学设计08-25

《比例的意义和基本性质》教学设计10-16