基本不等式教学反思
作为一名到岗不久的老师,教学是重要的工作之一,写教学反思可以很好的把我们的教学记录下来,那么你有了解过教学反思吗?以下是小编为大家收集的基本不等式教学反思,欢迎大家分享。
基本不等式教学反思1
平时我们听课很多都是新授课,课的模式我们也探讨很多了,而此节就课型而言应算作习题课,为何上此课型,主要是提出一种上法,让同仁加以探讨,得出几种模式。本节内容是“基本不等式的应用”,是在学生掌握用基本不等式技巧的基础上进行的,基本不等式的应用主要是两方面:一是求最值,二是它的实际应用。
教学过程设计为四个环节:
一是梳理基本不等式的知识点;
二是练习用基本不等式求函数的最值;
三是基本不等式在实际中的应用;
四是高考中基本不等式的典型题型。
时间安排是这样:
第一环节大概5分钟;
第二环节大概10分钟;
第三环节大概15分钟;
第四环节大概10分钟。
在实际操作时可能第一和第二环节有超时,故最后课堂内容不能在40分钟完成。当然,我的目的只是提出一种习题课的课堂模式,具体时间上我们可以通过对习题的增减来达到吻合。对于第四环节可能同仁有不同看法,认为只是让学生看一下高考题,起不到实质效果,还不如不要这个环节。我的设计意图是让学生了解此内容在近几年高考中出现的`形式,并作为资料保存课后自己再练习加以巩固。高中一二年级的老师和学生,应该要有三年一盘棋的思维和行动,每个内容上完后把近几年的经典高考题拿出来进行分析,我觉得不论对学生或老师都相当有益,如果能让学生养成这个习惯,三年时间的积累,让学生或多或少会对高考内容的重点、难点,命题的形式及命题的规律有自己的研究或者是想法,相信对他们高三的复习和迎考有很大的帮助。
基本不等式教学反思2
根据新课标的要求,本节的重点是应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的.证明过程,难点是用基本不等式求最值。本节课是基本不等式的第一课时。
在新课讲解方面,我仔细研读教材,发现本节课主要是让学生明白如何用基本不等式求最值。如何用好基本不等式,需要学生理解六字方针:一正二定三等。这是比较抽象的内容。尤其是“定”的相关变化比较灵活,不可能在一节课解决。因为我把这部分内容放到第二节课。本节课主要让学生掌握“正”“等”的意义。
我设计从例一入手,第一小题就能说明“积定和最小”,第二小题说明“和定积最大”。通过这道例题的讲解,让学生理解“一正二定三等”。然后再利用这六字方针就最值。这是再讲解例二,让学生熟悉用基本不等式解题的步骤。然后让学生自己解题。
巩固练习中设计了判断题,让学生理解六字方针的内涵。还从“和定”、“积定”两方面设计了相关练习,让学生逐步熟悉基本不等式求最值的方法。
课堂实施的过程中以学生为主体。包括课前预习,例题放手让学生做,还有练习让学生上台板书等环节,都让学生主动思考,并在发现问题的过程中展示典型错误,及时纠错,达到良好的效果。
不足之处是:复习引入的例子过难,有点不太符合文科学生的实际。且复习时花的时间太多,重复问题过多,讲解琐碎;例题分析时不够深入,由于担心时间不够,有些问题总是欲言又止。练习题讲解时间匆促,没有解释透彻。
基本不等式教学反思3
昨天讲了必修五第三章的基本不等式。开堂先回忆了初中所学的有关不等式知识,并讲解了基本不等式的几何意义。接着又把不等式中的高考涉及的几大问题都有所涉及。但是,一节课下来,感觉不是很好。
虽然一节课讲了几个高考考点,但是对于学生而言,刚刚接触,理解的不是很透彻。我觉得应该按照下面的方式来进行:一,第一节只讲基本不等式及其几何意义。让学生通过练习,充分理解不等式中的“一正,二定,三相等”的具体含义和应用。并辅以高考题型,是学生掌握高考动向。二,第二节再讲拼凑和分离这两种与之前所学函数知识有关的题型。体现出不等式与函数的关联,说明函数在高中数学的重要性,顺便回顾函数中的拼凑和分离这两种方法。三,第三节课再讲“1”的代换和图像法。这两种方法考察学生对知识的灵活变化以及对数形结合思想的应用,又比第二节的.知识深一点。这样的话,三节课知识层层加深,让学生体会到知识的关联,明确各个知识点在高考中的具体应用。而初始方法中,一节课先把所有高考重点全讲给学生,使学生容易迷惑,不知道本节课的重点到底是什么,而且学生不易掌握,毕竟容量大的话,练习量就会相应减少。而等到第二节,第三节再讲时,学生掌握的不熟练,还得再次复习,有点“烫剩饭”的感觉。
所以,讲新课,尤其是讲学生之前知识接触不多的新课,一定要稳扎稳打,不能只求大容量,贴高考,也要站在学生的思维角度去准备合适的内容,顺序以及授课方式。
基本不等式教学反思4
在复习完基本不等式第二课时后,我对这节课做了如下的反思:
一.在教学过程中要充分发挥学生的主体地位
在课堂上,无论是新教师还是老教师,通常会把自己当做课堂上的主人而过多的会忽略学生的主体地位;或者学生会因为长时间的习惯于听老师来讲解而忘记自己是课堂的主人。
在这节课中,我设计了多个让学生讨论的环节,但是当我说了同学们可以和自己的同桌讨论一下自己获得的结论之后教室里还是会很安静。这样的课堂活动经过了一分钟后,我不得不自己来讲解我设计好的问题。此时我感觉到这节已经失败了,因为我占据了本该属于学生的时间。
二要设计好教学问题
在教学中应合理设计教学中所要用的问题,我设计的学生互动环节为什么没有成功呢?我想很大的原因是我没有设计好问题,在提问题时没有明确我要求他们要给我什么样的结果。在这节课中,我大部分的问题都是这样问的:请同学们自己首先来做一下这道题目,然后跟自己的同桌讨论一下自己的结果是否正确。当学生听到这样的问题时,他们首先会自己一个人去完成题目,而不会跟自己的伙伴合作完成。而且在数学教学中对问题的梯度设计很重要,因为新课程很强调概念的形成过程,而概念的产生是一个抽象的过程,所以在教学时要非常好的展示给学生概念是怎么产生的,而这个教学环节就要求教师能够设计好问题的梯度。
三.要学会设计有深度的问题
在本节课的教学中,我问的最多的问题就是:同学们明白了没有啊,或者对不对啊,是不是这样的啊这些肤浅的.问题。而从课堂效果看,这些问题并没有调动学生的学习积极性,学生也只是机械的回答一下:是或者不是,对或者不对。使学生跟老师之间的沟通成了一种机械的问答过程。所以在以后的教学中我应该更加重视对问题深度的要求。
以上就是我对本节课的教学反思:多发挥学生的主体性地位,设计好教学问题并且要学会提有深度的教学问题。
基本不等式教学反思5
平时我们听课很多都是新授课,课的模式我们也探讨很多了,而此节就课型而言应算作习题课,为何上此课型,主要是提出一种上法,让同仁加以探讨,得出几种模式。本节内容是“基本不等式的应用”,是在学生掌握用基本不等式技巧的基础上进行的,基本不等式的应用主要是两方面:一是求最值,二是它的实际应用。教学过程设计为四个环节:一是梳理基本不等式的知识点;二是练习用基本不等式求函数的最值;三是基本不等式在实际中的应用;四是高考中基本不等式的典型题型。时间安排是这样:第一环节大概5分钟;第二环节大概10分钟;第三环节大概15分钟;第四环节大概10分钟。
在实际操作时可能第一和第二环节有超时,故最后课堂内容不能在40分钟完成。当然,我的目的只是提出一种习题课的课堂模式,具体时间上我们可以通过对习题的增减来达到吻合。对于第四环节可能同仁有不同看法,认为只是让学生看一下高考题,起不到实质效果,还不如不要这个环节。我的设计意图是让学生了解此内容在近几年高考中出现的形式,并作为资料保存课后自己再练习加以巩固。
高中一二年级的老师和学生,应该要有三年一盘棋的'思维和行动,每个内容上完后把近几年的经典高考题拿出来进行分析,我觉得不论对学生或老师都相当有益,如果能让学生养成这个习惯,三年时间的积累,让学生或多或少会对高考内容的重点、难点,命题的形式及命题的规律有自己的研究或者是想法,相信对他们高三的复习和迎考有很大的帮助。
基本不等式教学反思6
在教学活动中,我有以下活动觉得比较好的:
建立知识结构,进行新课的引入和知识的迁移.上课伊始,我书写了等式(方程)一章的部分知识结构,并且有由等式的有关概念到不等式的有关概念的类比线路图,从而引入课题,开始检查前置学习的情况.这样处理,学生对这个知识内容的整体把握就能够高屋建瓴,数学学习的能力意识就能够形成。
前置学习检查的任务明确.数学教学中很为重要的新知识引入在课堂之前的前置学习完成,为此,新知识的形成过程老师就没有办法把握了,这就要求数学教师很好地在前置学习检查方面动脑筋,在“不等式的性质”这堂课上,由同学们交流检查前置学习的情况,提出三条交流任务:不等式的性质是什么?不等式的性质是怎么研究得到的?不等式的性质与等式的性质有什么区别和联系?学生的交流和讨论就有了明确的方向,后面就有了学生很好的回报:性质的回答情况与以往一样比较到位,更有同学回答了不等式的性质是由等式的性质联想得到的,有同学回答了不等式的性质是我们通过由特殊到一般研究得到的(学案中安排了由具体例子到一般规律的总结),在与等式性质区别和比较之后,学生得出“在不等式两边同时乘以或除以一个数时一定要考虑这个数是正数还是负数”这样的注意点.因此学生前置学习是富有成效的,前置学习检查也是前置学习的补充和完善.
课堂设问、提问精心研究.在利用不等式的性质进行不等式的变形时(问题是以填空不等号的形式拟题的),提问:“各小题的结果是什么?怎样由已知的不等式变形得到的`?理论依据是什么”,这样设问便于学生研究,便于学生回答;提升学习内容,问题有难度,思考有深度,在学生回答五道判断题对错后,连续追问,有问为什么的,有问反例是什么的,有问成立的条件是什么的,有问怎样改变结论使命题成立,怎样改变条件试命题成立.提问学生回答问题形式多样,多数情况,学生举手回答,还有依座次回答,点学号回答,同学推荐回答等等,全班学生整堂课处于积极的参与状态.
课堂内容的处理详略得当.利用性质进行不等式的变形是性质的理解和掌握,难度不大,学生口答一挥而就;分类讨论虽是难题,三种情况一经点破,旋即解决;提升判断实是难点,反复讨论,多角度思考,多方位研究,一题多变化,用足力气;用不等式的性质解不等式,变形后的形式要明白、怎样变形要清楚、变形依据要对号、书写格式要规范,同时这又是后面解一元一次不等式的预演,移项法则由此产生,所以,安排了例题老师示范、安排了学生上黑板板演、安排了学生在上面点评.本课全部完成了预设的教学任务,用了八分钟时间进行了很充分的小结.
基本不等式教学反思7
平时我们听课很多都是新授课,课的模式我们也探讨很多了,而此节就课型而言应算作习题课,为何上此课型,主要是提出一种上法,让同仁加以探讨,得出几种模式。本节内容是“基本不等式的应用”,是在学生掌握用基本不等式技巧的基础上进行的。
基本不等式的应用主要是两方面:
一是求最值,
二是它的实际应用。
教学过程设计为四个环节:
一是梳理基本不等式的知识点;
二是练习用基本不等式求函数的最值;
三是基本不等式在实际中的应用;
四是高考中基本不等式的典型题型
时间安排是这样:
第一环节大概5分钟;第二环节大概10分钟;第三环节大概15分钟;第四环节大概10分钟。
在实际操作时可能第一和第二环节有超时,故最后课堂内容不能在40分钟完成。当然,我的目的只是提出一种习题课的课堂模式,具体时间上我们可以通过对习题的增减来达到吻合。对于第四环节可能同仁有不同看法,认为只是让学生看一下高考题,起不到实质效果,还不如不要这个环节。我的设计意图是让学生了解此内容在近几年高考中出现的.形式,并作为资料保存课后自己再练习加以巩固。
高中一二年级的老师和学生,应该要有三年一盘棋的思维和行动,每个内容上完后把近几年的经典高考题拿出来进行分析,我觉得不论对学生或老师都相当有益,如果能让学生养成这个习惯,三年时间的积累,让学生或多或少会对高考内容的重点、难点,命题的形式及命题的规律有自己的研究或者是想法,相信对他们高三的复习和迎考有很大的帮助。
基本不等式教学反思8
本节课,教师能较好的分析把握教学内容,教学设计新颖合理,教学组织合理有效,较好的达成了教学目标,教学效果良好。本节课有如下主要亮点:
第一,教学线索清晰。教学中以基本不等式的获得和应用为明线,以数学思想方法的渗透和体会为暗线。在本节课的学习和教学中,明暗线索交相呼应,学生不断的在知识学习的过程中体会数学思想方法的作用,甚至能在例题教学中尝试让学生运用思想方法策略性的思考和学习,学生在知识学习的同时更有对数学认识上的提升,这就使得学生的学习过程自然流畅。
第二,注重知识的本质认识和理解。本节课,就基本不等式这一核心知识而言,教师通过对教学材料的有效处理,为学生呈现了多角度认识知识的机会,特别是设计了基本不等式和重要不等式关系的认识和思考环节,使得学生认识到本节课的两个不等式的和谐、一致。这样的设计促进了学生对基本不等式的本质的认识,利于学生理清本节课的核心知识,而教师在轻松自然间不着痕迹的很好的突出了教学重点,同时也为广大教师提供了一些如何认识基本不等式的新视角。
第三,注重学生参与的实质性、坚持知识获得的'生成性。整堂课,教师始终做到学生知识的获得来自于实质的数学活动和生成的深刻性。在本节课,我们可以从学生的情感参与、行为参与、认知参与三个维度观察到,通过学生参与真实意义的数学活动,保证了学生生成的自然合理,并将生成成为知识获得的前提,这样的学习是科学有效的。
当然本节课也还存在一些不足:
整堂课表现出缺少引导学生适时对学习进行反思,这样就失去了一些能让学生体会或可能形成学习策略的机会。尽管教师在核心知识的教学中已经较重视知识的本质认识和理解,但在教学过程中的某些时刻还是表现稍有急躁,没有将知识获得的过程持续完美。从整体上看,整节课的探究水平还是显得稍低尚处于引导探究层次。究其原因,是传统讲授式教学习惯在不经意间的反映。
基本不等式教学反思9
本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而示得,口欲言而示能”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
过问题4让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握、发展学生的辩证思维。
在运用符号评议的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予。这样既调动了学生的学习兴趣,也培养了学生的符号评议表达能力。
练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的`价值,增进了对数学的理解。在这一环节,让学生起来回答音量的时候有点耽误时间。
让学生通过总结反思,一是进一步学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育丰功,用自信蕴育自信,学生以更大的热情投入致以捕捞学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
基本不等式教学反思10
数学知识体系是一个前后连贯性很强的知识系统,在空间与图形领域,中小学数学主要体现为由直观几何、实验几何向论证几何逐渐过渡。初中数学教师在教学中要注意与小学教学相衔接,适当复习小学内容,在小学的基础上提高。下面从中小学衔接的角度,对“平行四边形的性质”(新人教版)这节课做了一些反思。
一、反思备课
备教材:
备课时,我首先查阅了本届学生小学时学过的教材。发现,小学教材中“平行四边形”的定义用粗体作了明确界定,“对边相等”的特征学生是用度量或折叠的方法得到的。平行四边形的面积是通过割补转化为长方形进行重点学习的。所以学生应该对平行四边形的概念和特征已经有所认识并会求其面积。
“平行四边形”是全章重点内容之一,它是在学生已掌握了平行线的性质、全等三角形和多边形的有关知识的基础上研究的。平行四边形是平面几何的又一典型图形,它既是以前知识的综合应用也是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。矩形、菱形、正方形的性质和判定都是在平行四边形的基础上扩充的,它们的探索方法也都与平行四边形的性质和判定方法一脉相承。梯形的性质、三角形中位线定理等的推证,也都是以平行四边形的有关定理为依据的。而“平行四边形的性质”又是本章的第一节,这一节的学习对学平行四边形的判定和其它特殊四边形起着关键的作用。教材中平行四边形的“对边相等”、“对角相等”、“对角线互相平分”三个性质是分两部分说明的,因这节课是采用探索式教学法,预计学生在同一节课中就能够得到这三个性质,所以把三个性质放在一节课中进行处理。
备学生:
为了清楚的了解学生的认知情况,我深入学生中间,调查了学生对平行四边形的掌握程度。发现,将近90%的学生能够说出平行四边形的定义;50%多的学生了解“平行四边形对边平行且相等”这一特征;而对“平行四边形对角相等”和“对角线互相平分”的性质,只有很少一部分学生因超前学习才了解。鉴于学生的认知结构,我把探索平行四边形的性质放在了角和对角线方面。
备教法:
《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。我看了一位老师针对平行四边形上的一节公开课。这位老师可能是为了调动学生的主体性,让学生对“平行四边形”下一个定义。结果,学生把平行四边形的定义和所有判定方法全部说了出来,并说出这样定义的原因。听起来真是婆说婆有理,公说公有理,难以分辨用哪一个做定义更合适。最后老师说习惯上用“两组对边分别平行”来定义。看了这节课后再结合小学教材和学生的认知情况,我认为,小学教材已对“平行四边形”作了明确叙述,在“平行四边形”是如何定义的这一方面再做文章只能又陷入老师给学生解释为什么不能用平行四边形判定(学生并不知道是判定)来定义,而定义本身常常又是一个规定性的东西。因此,我在这个地方采取让学生事先准备好两张完全相同的三角形纸片,然后在课堂上让学生拼出平行四边形并把拼的图形展示在黑板上,在调动学生积极性的同时,既能发现学生对平行四边形的理解情况,也为下面平行四边形性质的证明做好铺垫。
在探索平行四边形性质上,采取自主探索、合作交流的方式,并把探索到的结论和证明过程填写在事先发给的`探究报告里,使学生的思维和落实密切联系在一起。让学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,感受公理化思想。
恰当的利用多媒体课件。为了让学生对平行四边形的三条性质有更明确的认识,我从旋转的角度准备了形象生动的性质探索课件。
整节课采取探索式证明方法,即采取观察、猜想、直观验证、推理证明、得出性质的方法。向学生渗透化复杂为简单,化新知为旧知的“转化”的数学思想方法。
二、反思上课
进入初中以后,随着学生逻辑思维能力和抽象思维能力的加强,不能再仅局限于一些结论的获得,而要注重结论的推导过程,揭示知识的来龙去脉,也就是不仅要知其然还要知其所以然。教材也要求学生要对发现到的结论进行推理论证。
对“平行边形的对边相等”这一性质在小学是通过观察、测量对边的长度进行比较得到的。能否证明这一结论呢?学生在学多边形知识时曾经采取把多边形分割成三角形来研究,所以课堂上当对这一结论进行证明时,学生很快想到把四边形分割成三角形利用全等的知识来解决。但学生在推理时符号语言说的还不太顺畅,推理也还缺乏规范性。所以在学生的叙述下教师进行规范的推理板书,给学生做出示范。
基本不等式教学反思11
在高三复习中,我结合高考中对《基本不等式》的考试要求以及近几年来对这部分知识点的考察,特设计了本节复习课,首先从知识点和解题方法、要求方面进行复习,然后精讲三个例题,帮助学生形成这类题的解题思路和解法规范,接下来由学生进行练习、分组讨论、上黑板板演,最后师生共同总结,完成本节课的任务。
上完这节课后,我对教学设计和教学过程进行了反思,得到以下几点:
教学中的优点:
1.课题引入
在教学案和发给学生的导学案中,首先用问题的形式呈现本节课的知识点和解题方法,学生通过回答问题,掌握本节课所应用的知识点,为后面的解题打下基础。
2. 精讲例题
通过精选的三个例题,和学生一起回顾《基本不等式》的基本解题思路和解题方法,常用的'变形方法----配凑法,以及解题的一般步骤,为学生作好解题示范。
3. 课堂练习
在本节课中,我精选了五道往届的高考真题,供学生进行练习,并且提前让学生进行练习,然后在课堂上与同学进行交流、讨论,对于一道题,提出自己的看法,在学生讨论的过程中,教师进行观察,对于学生普遍存在的问题进行现场指导。
4. 学生板演
学生通过讨论,对于问题有了自己的解决方案,每个小组叫一个同学进行板演,提高学生对课堂的参与度,也让同学们有了展示的机会。
5. 学生讨论
在课堂上,给学生留有讨论的时间,增强学生之间的交流,让每个同学都有机会在小组内说出自己的想法,在倾听中学会交流和提高。
6. 课堂小结
学完本节课后,让学生先进行总结,然后教师启发同学们进行补充,既总结所学的知识点,又总结学习过程和所采用的数学思想方法。
教学中的不足:
在本节课中,由于有些学生提前做的练习比较少,因此课堂练习的时间显得有点紧,有个别同学没有做完布置的五道练习题,还有,由于很多高考题目对于应用条件中的“三相等”考察得不多,可能导致有些学生对这个应用条件不够重视。
对于今后教学的启示:
讲完本节课,和同教研组的教师进行讨论交流后,对于今后工作的启示,我认为有以下几点:
1. 在教学中,让学生多动手多动脑,充分发挥学生学习的主动性和积极性。
2. 布置的练习多督促检查,让学生先自己动手,为课堂教学中学生之间的合作交流打下基础。
3. 组织学生的小组讨论,激发学生讨论的热情,引导学生与同学合作交流,分享学习过程中的经验教训。
4. 高三的复习课可以以先复习相关知识点,再讲解典型例题,然后学生练习,、小组讨论、上黑板板演,最后师生总结的模式进行。
5. 在高三复习时,习题可以用往届的高考真题来进行,既提高学生的做题能力,又增强学生对高考题的适应能力,降低高考的神秘感。
6.在进行课堂总结时,既总结所学的知识点,又总结学习过程和所采用的数学思想方法。
总之,在进行高三复习时,既要考虑高考的要求又要结合本校学生的实际,在组织复习的过程中,把两者紧密地结合起来,帮助学生掌握高考常考的知识点和常考的考题类型,有效地提高高三复习的效率。
【基本不等式教学反思】相关文章:
《不等式的性质》教学反思11-06
等式与不等式的性质教学反思12-01
分数的基本性质教学反思04-11
武术基本功教学反思06-11
《分数的基本性质》教学反思08-16
比例意义和基本性质教学反思11-02
《分数的基本性质》教学反思15篇11-15
分数的基本性质教学反思15篇12-18
比例的意义和基本性质教学反思02-13