圆柱的表面积教学反思

时间:2023-01-04 16:45:45 教学反思 我要投稿

圆柱的表面积教学反思15篇

  身为一位优秀的教师,我们要在课堂教学中快速成长,借助教学反思我们可以拓展自己的教学方式,怎样写教学反思才更能起到其作用呢?下面是小编为大家收集的圆柱的表面积教学反思,欢迎大家分享。

圆柱的表面积教学反思15篇

圆柱的表面积教学反思1

  1.教学要引起学生的问题意识。

  “问题是数学的心脏。”问题意识是一种探索意识,是创造的起点。学生有了问题,才会思考和探索,有探索才会有发展。所以我让学生去发现计算圆柱的表面积在课堂中和生活中的区别,使他们意识到课堂中的数学是经过提炼总结出来的。用数学知识解决问题,如算出茶叶筒至少需要多少平方厘米的铁皮,由此引起学生的认知冲突,调整原有的认知结构,促进探究向深层次推进。

  2.教学要激发学生的过程意识。

  数学学习的本质是“再创造”。数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。这节课围绕“制作一个圆柱”展开活动,探究的脉络清楚。学生经历了“实践——失败——总结——再实践——成功”的探究过程。如:学生在失败后说:“我们忽视了侧面与底面的关系,计算时我们都知道圆柱的底面周长就是侧面展开后长方形的长、正方形的边长或者平行四边形的底。但制作时就忘记了这些知识。”“学生在经历了失败才引起了思考,在对与错、应该与不应该的斗争中撞击智慧的火花,课堂的生命力由此显现。在总结之后的再一次实践中,学生的创新意识和创造能力体现出来了,这种情不自禁的创造来源于感悟和体验。只有经历了这样的感悟、体验的过程,才能得到能力的锤炼,智慧的升华。

圆柱的表面积教学反思2

  我今天执教的内容是《圆柱的表面积》,圆柱的表面积,重点在于进行推导圆柱的侧面积计算公式,圆柱的表面积计算公式。在本节课的教学中,我从始至终贯穿着生本理念,以教学内容问题化为抓手,体现在教学中以学生小组活动为主体,教师为主导,训练思维为主线这样的原则,让学生在交流中学,在玩中学中课后,听取了孙主任和王主任的评课,又联系课堂教学,我进行了深刻地反思。

  一、小组合作学习的组织有序

  这节课,我以“圆柱的侧面积计算公式”和“圆柱的表面积计算公式”为核心问题进行教学。整节课,组织学生围绕这两个核心问题进行交流、讨论,汇报和交流。但合作学习小组,每位同学都参与进行学习活动,特别是个别差生,在优秀同学的指导下倾听有进步。还有教师在小组合作学习当中,加入学习小组,指导和帮助学习小组进行学习。

  二、学生操作的缺失

  整节课的基础应该是建立在学生动手操作的基础之上,再进行观察发现讨论交流问题,但由于课前布置的小练习已经做过。缺失了在课堂上操作展示这一块,直接进行讨论,造成个别中等和偏下的学生,没有和实例结合,造成理解思维困难。另外,在教学例3时,可以做一个模型帮助学生进行理解。

  三、教师指导还需到位

  由于这节课,整合学校课题,教学内容问题化,我选择进行小组合作学习,但教师,如何组织学生进行学生,面对学生交流的答案的不确定性,如何引导组织学生进行解决,给我们提出了更高的要求,所以在课堂教学中,一些事先没有预计到的情况出现时,没有很好的去解决,造成了学生学习当中的疑惑。这也给教师提出了更高的要求。另外,在小组合作学习中,作为教师,又应该如何去指导学生展开学习,都是我们需要注意的地方。

圆柱的表面积教学反思3

  在认识圆柱体的课堂上,我设计了让学生分小组进行自主合作学习的教学形式。学生的小组活动各不相同,比较突出的优点是学生对圆柱的特征认识都是在自己动手操作的过程中体验到出现的主要问题:

  ①学生对自己所探索的知识不会归纳,表述;

  ②学生的探研学习是无序的,随意的;

  ③各组的各位成员对知识的探究和思考,差异很大;

  ④学生的自学能力较差;

  ⑤学生不会交流学习。

  研究“圆柱的认识以及表面积”是在学生已有的有关圆面积和长(正)方体的表面积等有关知识,已具有了独立研究表面积的能力,而且圆柱形在小学生的显示生活中处处可见,比较熟悉,因此,我们备课组将此学习内容作为学生进行探索,研究学习的材料。

  通过试验课:我们对以下几个方面进行反思:

  1、这样的课,让学生进行探研学习,教师进行引导的关键是设计好一张让学生有序进行知识归纳和理解的表格。

  2、这样的课还要多让学生上逐渐培养学生交流学习的能力和独立思考分析的能力。

  3、在学生动手探索的过程中,教师要做的是帮助,不是引导、指责,指导也应是在学生需要的时候,再给予

  4、这样的课,有利于教师对学生的学习特点进行观察和分析。

  只有看清了学生的学习,才能有方向努力做好我们的教。

圆柱的表面积教学反思4

  圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。

  接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。

  [圆柱的侧面积和表面积]

  沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即s圆柱侧=ch=2πrh(r为圆柱底面的半径)

  圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即s圆柱表=s圆柱侧+2s底=2πrh+2πr2

  教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。

  学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:s=2πrh,是求();s= 2πrh+πr2,是求();s=2πrh+2πr2,是求()。

  《圆柱的侧面积和表面积》教学片段

  在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。

  我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:

  求铅笔涂漆部分的面积是求()的`面积;

  压路机滚动一周压过多大路面是求()的面积;

  求一个水桶用多少材料是求()的面积;

  求汽油桶用多少铁皮是求()的面积。

圆柱的表面积教学反思5

  在教学圆柱的表面积时,由于学生已经学习了长方体和正方体的表面积,而且上节课已经制作过圆柱模型,所以学生对表面积含义的理解并不困难。因此在教学圆柱的表面积时,我让学生通过讨论交流并观察圆柱展开图,很快就理解了圆柱的表面积是由一个曲面和两个完全相同的圆围成的。但在计算表面积时,侧面积的计算方法是本课中的教学难点。学生往往不能将圆柱的底面半径及圆柱的高,和圆柱侧面的长宽建立起联系,因此在教学时我加强了学生的操作活动,让学生预先在展开后的图形中标明圆柱的底面和侧面,以便把展开后的每个面与展开前的位置对应起来但在计算时却出现周长与面积混淆,所以我及时帮助学生理清解题思路,让学生明确计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。而且要能熟练区分圆的周长和面积的计算公式。尽管如此学生在解决实际问题时还是问题很多,因为步骤较多,计算粗心不规范也影响了解题速度和准确率,所以一节课下来,课堂容量不大,效率较低,看来在这个单元的教学中要结合学生实际再改进教学方法,提高课堂教学效率。

圆柱的表面积教学反思6

  1、重学生学习的过程。传统中的教学是教师直接出示圆柱的表面积计算公式让学生进行死记硬背,然后套公式计算。这是只重结果,不重过程的现象。这节课,学生初步了解了圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面积就是计算圆面积。我在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列活动探索出圆柱的侧面是一个长方形,从而推导出圆柱侧面积计算公式。

  2、学生成为有效学习者。有效地复习了圆的面积计算方法,有效地掌握了圆的表面积计算方法

圆柱的表面积教学反思7

  本节课的教学,同学们学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。主要体现在三个重视上:

  1、重视学习内容的生活性

  数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。在第一环节中,教师就创设了“饮料罐”情景,你想学什么?让学生自己提出问题,激发了学生创造的愿望。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2、重视学习主体的创造性

  著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3、重视学习过程的实践性

  创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。本节课的第二环节让学生在动手操作中发现圆柱侧面展开的三种情形,在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

圆柱的表面积教学反思8

  圆柱圆锥是小学阶段几何教学最后一部分内容,圆柱表面积计算公式的探究非常适合学生自主探究。结合我校开展的“提纲导学、自主探究”活动,在本节课的教学中,我做了积极的尝试,效果非常不错。

  首先,在新授课之前,我在去年设计的道学提纲基础上稍作修改,形成了自己的导学提纲:

  1、找一个圆柱形的物体,测量出它的底面直径和高(尽可能取整数,最多保留一位小数)

  2、你能动手用彩色纸给这个圆柱形的物品穿上漂亮的“外衣”吗?动手试一试

  “穿衣”之前先思考:圆柱形物品有哪几个面?这些面都是什么形状?

  3、把圆柱体的漂亮外衣脱下来,展开铺在桌面上观察:圆柱的外衣包含哪几部分?都是什么形状的?

  4、你能算出用了多少彩色纸吗?注意观察:计算每部分的面积所需要的数据,就是圆柱的什么?

  5、将你的计算过程试着写在反面。

  把这个提纲发给学生,作为晚上的作业。因为学生有了圆的周长、圆的面积提纲导学探究经历和体验,对这次的探究比较有兴趣,加之家长的大力支持,全班同学都很认真很用心的进行了探究实践,不及给圆柱体穿的外衣漂亮、精致,而且认真按提纲的要求进行了观察、思考。

  课堂上,学生饶有兴趣的互相展示了自己的作品,互相交流了自己的实践过程和操作中的乐事。在此基础上,孩子们争先恐后的举手发言,向全班同学展示自己的探究过程和发现。他们通过动手实践发现:给圆柱穿上外衣需要一块长方形的彩纸和两个同样大小的圆形,长方形那个彩纸的长等于圆柱地面周长,宽就是圆柱的高,而两个圆形就是圆柱的底面。孩子们互相交流,互相补充,很自然很直观地得到了圆柱的表面积计算公式,老师在这其中只起到了一个穿针引线的作用,课堂气氛活跃,孩子们学的轻松愉快而且扎实。

  不足的是,课后练习时,学生计算时由于数字不好算,常有为难思想,计算失误较多。还有的学生,列式时容易丢三落四。

  通过本节课的教学,我以后会注意以下问题:

  一、提纲导学法是很不错的方法,以后会根据课题继续尝试。

  兴趣是最好的老师,这种作业学生比较喜欢,并且各种能力都会得到锻炼和提高;让学生能够按提纲步骤探究,避免了上课探究时小组活动中部分孩子的“观众、听众”角色,每个人都要自己亲手去做,提高了学生参与意识;家长参与了孩子的活动过程,关注了孩子的发展过程,有助于了解孩子的情况;

  二、探究不能只重过程忽视结果

  在学生探究得到结果后,更要重视知识的灵活运用,要注意不能让学生重过程轻结果,更要重视培养和发展学生运用所学知识解决实际问题的能力。解决问题时,比较复杂的问题,不要列综合算式,以免把本来会做的题弄错,提高正确率。

  本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课教学与练习巩固有机地融为一体,使学生做到动手与动脑相结合,使课堂做到讲与练相结合。为了让学生能更好地掌握本节教学内容,我认真地分析了教材的教学三维目标要求与学生的实际数学水平之后,并结合学生现有的数学基础,在教学时,着重注意做好以下几个方面:

圆柱的表面积教学反思9

  苏霍姆林斯基曾指出:“在人们内心深处都有一种根深蒂固的需要,这就希望自己是一个发现者。研究者,在儿童的精神世界中,这种需要特别强烈。”那么在实际教学中,如何给学生提供一个发现、研究、探索的机会就显得尤为重要。这就必须在新的教学理念指导下,把生动的课堂还给学生,给学生一个自主学习的机会,下面就《圆柱的侧面积与表面积》谈谈自己的教学体会。

  一、创设问题的情景

  在新授时我打破以前拿出一个圆柱放在桌上直接进行侧面积公式推导模式,而是提供给学生两个空心纸圆柱,一个矮胖型,一个瘦高型,鼓励学生大胆猜想,“谁的侧面积大一些”。学生们看到两个圆柱表现得非常积极,兴趣十分浓厚,思维也很活跃。有的说:“我认为矮胖型侧面积较大。”我就追问他为什么?他说:“矮胖型圆柱比较粗,我认为圆柱侧面积与它的粗细程度有关。”有的说:“我认为瘦高型的圆柱侧面积较大。”我也追问他为什么?他说:“瘦高型圆柱比较高,我认为圆柱侧面积与他的高低有关。”当然还有一部分认为它们的侧面积相等或无法判断的,因为他们认为圆柱的侧面积与圆柱的粗细和高低都有关系,甚至还把小的那个圆柱放在大圆柱内,再把大圆柱底面捏起来让我看。对子上面的回答我都没有给予直接肯定或否定,关键是我认为通过学生们对两个圆柱的观察都已认识到了非常重要的两点,即圆柱侧面积大小与圆柱粗细和高低有关。通过这样创设情景设疑大大激发了学生的直觉思维,而不是像以前对照公式直接去讲解。与此同时我再设一疑,这两个圆柱到底谁的侧面积大,你们能否通过动手来证明呢?

  二、动手操作,实践领悟

  在允许学生想一切办法证明自己的猜测时,学生们再一次表现了良好的学习兴趣,个个动手动脑,有的沿高直往下剪,把圆柱侧面剪开得到了一个长方形的展开图;有的斜着剪下来得到一个平行四边形;有的剪成各种不规则图形;还有的剪成若干个三角形,梯形等等,体现了学生思维的多样性,差异性。也使学生一下子明白其实求圆柱的侧面积完全可以转化为我们以前学过的图形。既然圆柱的侧面积可以转化成这么多以前学过的图形,那你们觉得把它转化成哪一种来求更为合理呢?

  三、讨论交流,合作探索

  因为任何知识获得的最佳途径是自己去发现,因为这种发现理解最深,也最容易掌握其中内在规律、性质联系.在学生自己发现圆柱侧面积可以转化成何种图形来求最简单、合理.而且对于一些不能剪开的圆柱,如铁圆柱、石圆柱、玻璃圆柱……,也发现了他们的底面积即长方形的长,圆柱的高即长方形的宽之间的对应关系。求圆柱侧面积只要用圆柱底面周长乘以高。通过这样的讨论交流不仅可以让学生发现,掌握圆柱侧面积计算公式,更进一步认识到长方形、平行四边形与圆柱的内在联系,从而使学生思维也从具体形象走向抽象概括。

  四、实践应用,发展能力

  在学生自主发现圆柱侧面积=底面周长×高后,我马上给出题目:一个圆柱底面直径0.3米,高2米,求它的侧面积?让学生独立进行解答。侧面积会求了又如何求圆柱的表面积呢?独立解决,一个圆柱高是15厘米,底面半径5厘米,它的表面积是多少?最后我还启发学生思考:学了这个公式,你能用它解决哪些实际问题?如有的学生提出圆柱侧面包装纸的用料问题,只需求一具侧面;如制造一种圆柱形无盖茶杯或水桶的表面积,只需计算一个底面加一个侧面;再如圆柱形汽油桶表面积,就要求两个底面和一个侧面……这样就拉近了所学数学知识与实际生活的联系,从而也培养了学生的能力。

  这节课在教学时我并没有把大量时间放在如何讲解侧面积公式及其公式应用上,而是让学生大胆猜想,自主探索,也培养了他们人与人之间的交流合作,使他们的思维发生碰撞,充分发挥内在潜能,从而有效地培养了学生主动探索精神,动手操作能力与创新精神。

圆柱的表面积教学反思10

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、 分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、 质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、 自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

圆柱的表面积教学反思11

  “圆柱的表面积”一课,教材先提出“圆柱的表面积指的是什么”,让学生在交流中逐步理解圆柱表面积的含义。然后安排了让学生将圆柱模型展开,看一看展开的面是由哪几部分组成的,把它们标出来等探究活动,目的是让学生经历实验研究,建立数学模型的抽象思维过程,发现圆柱的表面积与已经学过的图形面积之间的联系,从而得到圆柱的表面积的计算方法。

  对于圆柱表面积的知识,学生不是一张“白纸”。有的学生可能已经从数学课本上了解了一些,加之在“圆柱的认识”中也有了一些体验和感悟,个别学生在课外学习中已经知道一些圆柱表面积的计算方法。但是即使学生知道方法,却不一定真正理解。所以,教学中教师注重通过出示学习材料、提问、让学生操作和演示等活动,帮助学生获得圆柱的表面积与圆面积、长方形面积之间的联系。对于圆柱体侧面积计算公式的推导,要遵循主体性原则,让学生动手操作,在观察、推理中促进知识的迁移,使学生掌握圆柱体侧面积的计算原理和方法,即通过“等积变形”将圆柱的侧面转化为长方形。同时在教学过程中要尊重学生的知识基础和已有的生活经验,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程,并根据课堂教学的实际调整教学思路。

  我认为。数学建模活动要有利于学生的数学理解。数学教学活动要促使学生“真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验”。因此,数学教学活动的设计要有利于学生理解数学。本节课的教学,要让学生明确圆柱表面积的含义,知道表面积的计算方法,会用表面积的计算公式进行计算,更重要的是要引导学生经历探究圆柱表面积计算公式的过程,遵循由“观察物体——建立表象——抽象图形——建立模型(空间观念)”的认知规律,通过实践操作、讨论、交流等活动,促进学生对数学的理解。课开始,教师从数学知识的内在联系入手,提出两个综合性问题,唤醒学生对有关表面积计算的回忆,这是顺利开展数学活动、理解圆柱体表面积的重要基础。接着提出:“圆柱的表面积指的又是什么?”为后来的操作和丰富直观表象起到了导向作用,从而为学生经历建模过程,达成数学理解奠定了坚实的基础。

  本节课我安排了自己制作、剪开、展开侧面、观察图形等活动。通过实践操作,使学生领悟长方形的长相当于圆柱底面的周长,长方形的宽相当于圆柱的高,从而逐步归纳出圆柱的表面积的计算公式。由此可见,借助实践操作活动建立丰富的直观表象,可以为学生的数学理解提供支撑,更重要的是在操作过程中学生积累了数学活动经验,奠定了良好的数学理解基础。

  我给学生留出了较为充裕的思考与实践操作的时间,在得出结果后,教师尽可能全面把握学生的情况,及时捕捉课堂资源,提出:“说一说,在计算圆柱的表面积时,应注意些什么?”组织学生进行交流,在交流和讨论中,形成师生、生生之间的有效互动,促进学生将实际问题抽象成数学模型并进行解释与应用。

  在练习中,我首先出示一组基本练习题,使学生熟练掌握求一般的圆柱体表面积的方法,加深对圆柱体表面积公式内涵的理解和把握。接着进一步联系生活实际提出问题让学生解决,体验运用知识成功解决问题的愉悦。最后,通过让学生再次回想计算圆柱体表面积的公式,进而加深对新知识的掌握。

圆柱的表面积教学反思12

  1、直观演示和实际操作相结合。

  新课开始,教师通过圆住教具直观演示,引导学生复习圆柱的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆住形纸筒进行实际操作,最的探究出侧面积的计算进行实际操作,最后探究出侧面积的计算方法。

  2、培养了学生的合作创新意识。

  在教学圆住侧面积计算方法时,教师设有拘泥于教材上把侧面积转化为长方形这一思路,而是放手让学生合作探究;能否将这个曲布置民化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开。结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等两面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的创意识。

圆柱的表面积教学反思13

  为了能充体现新课程理念,促进学生的发展,教学过程中我精心安排了观察、操作、讨论交流、应用等教学活动,同时积极营造愉快、民主、轻松、和谐的学习氛围。反思整堂课程教学主要围绕以下几点展开:

  一、打破传统教学,灵活合理地重组教材

  “圆柱的表面积”这部分数学内容包括:圆柱的侧面积、表面积的计算、表面积在实际计算中的应用。教材安排了一道生活例题,分步教学。备课时,我打破了传统的教学程序,将这些内容重新组合,合理把握教材,力争有效的完成教学任务。首先将侧面积计算方法的推导作为教学难点来突破:后将表面积的计算作为了重点来教学;将表面积的实际应用作为重点来练习。三者有机结合、相互联系、多而不乱。教学设计和安排既源于教材,又不同与教材。例题并没有专门的教学,但其指导思想和目的要求分别在教学过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了课堂教学效率。

  二、充分发挥教师主导与学生主体作用的统一。

  本节课在教学上采用了引导—合作—引导的方法,通过教师的“导”,鼓励学生积极、主动地探求新知。

  1、直观演示与实际操作结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱体表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在我的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最终发现圆柱的侧面展开图有多种形式,而不是单纯的照本宣科,沿高线展开;另外实践中使所有图形进而转化为长方形。实现教材的回归,最后探究出侧面积的计算方法。

  2、教师讲解与学生练习相结合

  教学过程中,我改变了传统的先讲后练的教学模式,做到讲练结合惯穿始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。具体做法是:在学生理解圆柱的侧面积的公式后,安排学生强化训练:紧接着又复习圆面积公式,训练计算圆柱的底面积,利用计算所得的数据,合理自然地计算出圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了实际生活问题的引导教学。使学生学得轻松,练得有趣。

  三、较好地培养了学生的创新意识

  1、培养了学生的合作创新意识。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手学生合作探究,鼓励学生猜想和实验,最终学生通过动手、观察和思考,探讨出了侧面积计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。

  2、培养了学生的实践能力。

  本节课我大胆给予学生自主探索的时间与空间,让学生动手测量、动手实践,使学生处于学习主体的地位,充分发挥每一个学生的潜能,让学生在合作学习中不仅达到学以致用的目的,而且培养了实践能力。

  四、较好地利用现代化的教学手段。

  本节课合理地利用了多媒体教学技术。在讲练过程中,动态课件演示,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的罐头盒、笔桶、圆柱立柱等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系

  五、课后拓展、知识设计联系实际。

  安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。设计题目的计量单位有所不同。课后习题层次加深,始终以培养学生审题习惯及应用能力的提高为主线。

  当然,在这节课的教学中,还存在着一些不足:

  一、我整节课的板书安排不够合理,书写有些潦草!

  二、实践操作时间安排有些急。在动手探索圆柱侧面积的计算方法时,大部分学生操作慢,展示推导的过程有些短促,导致个别学困生只能听听而已。

  三、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。

圆柱的表面积教学反思14

  圆柱的表面积由侧面积加上两个底面积组成,学生在做题过程中往往不能顺利地找出解决问题的关键,一道题,往往不会直接给出解决问题的所有必要条件,在给出一些条件的同时,往往隐藏了一些,老师在教学的过程中,就是要引导学去”刨“出隐藏着的一些信息,例如一个圆柱体知道底面周长和高,怎样求出表面积,要求表面积,关键是求出两个底面积,知道底面周长求底面积,两个量之间的类似点在于都要用到圆周率,知道底面周长,可求出直径或半径,学生的思维症结在于不会联系起来思考,为了突破这一难题,我作了多方面的努力,取得一些效果,但仍有一些人不明白,为此,我认为,应该把圆柱的各个部分再次拆开来,重点在干剖析圆的面积与周长之间的关 当我一个人的时候,手里拿着手机,浏览一些网页,看看电视上的新闻,打打篮球,看看自己喜欢的书籍… 当我一个人的时候,睡睡懒觉,洗洗衣服,洗洗澡,呆呆地看大山,看看天空… 当我一个人的时候,给远方的母亲打个电话,和朋友在电话上互相调侃,在网上看看朋友、同学的动态… 当我一个人的时候,我能够让自己的心灵插上翅膀,自由的飞翔,当我一个人的时候,我总能收获几许温馨与甜蜜,当我一个人的时候,也许,远方的你,也正在一个人享受着那难得的宁静与幸福。

  面积与周长之间的相同点在于,都要用到圆周率和半径去计算,知道周长可求半径,知道半径可求面积,在这里,我对学生的引导不到位,这是我的不足之处。

圆柱的表面积教学反思15

  圆柱的表面积是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个化曲为直的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率;经验少,类似烟囱、通风管、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。

  一、在操作中建立表现。

  学生已经学习了长方体和正方体的表面积,对表面积的概念并不陌生。在教学圆柱的表面积时,我先让学生自己制作圆柱体、在动手做一做的过程中理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的,从而真正建立圆柱侧面的表象。

  二、化曲为直沟通联系。

  课前布置预习作业,找一贴有商标纸的圆柱实物,沿高剪开你有什么发现。课上学生交流,沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。我在圆柱的教具上包一张长方形纸,然后张开,在黑板上画上教具的直观图,长方形纸的图(1:1)。让学生观察后说出:长方形与圆柱底面的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长宽,所以圆柱的侧面积=底面周长高。通过展、围的几次操作,让学生切实建立这两者之间的联系。

  三、抓住本质,理清思路。

  本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在解决问题时,我要求学生写出每一步求的是什么,用了哪一个公式,帮助学生理清思路。遇到计算比较繁琐的提供计算结果,我觉得不必在计算上花费大量的时间。

  当然,学生接触到一些实际问题的时候,由于生活经验和社会经验都比较浅薄,对一些物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法一定的不理解,需要通过反复练习才能达到一定的程度。另外我认为在教材的编排上也有一定的问题,五年级时学了圆的知识,过了差不多一年再来运用,根据学生遗忘曲线规律,大部分学生对圆的周长和面积公式比较生疏,虽然通过新授前的基础训练可以唤起学生的记忆,但毕竟要能熟练地用于侧面积和表面积的计算,无形中增加了学生解题的难度。原来教材的编排相对来说更有系统性,学习间隔的时间不长,可以在知识的运用过程中相互巩固内化。

【圆柱的表面积教学反思15篇】相关文章:

《圆柱的表面积》教学设计07-22

圆柱的体积教学反思15篇12-01

圆柱体积教学反思11-05

六年级数学《圆柱的表面积》教学设计12-12

教学dtnl的教学反思12-15

投掷教学反思01-03

老王教学反思01-01

尾巴教学反思12-31

《村居》教学反思12-31

iuü的教学反思12-28