圆的面积教学反思

时间:2022-09-12 08:27:28 教学反思 我要投稿

圆的面积教学反思

  身为一名到岗不久的人民教师,我们的工作之一就是教学,通过教学反思可以有效提升自己的教学能力,快来参考教学反思是怎么写的吧!下面是小编帮大家整理的圆的面积教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

圆的面积教学反思

圆的面积教学反思1

  课堂教学中培养学生创新技能必须依靠潜移默化的熏陶方法,让学生在不断经历的学习过程中,感悟到创新思维的技巧。下头是我对本课教学的反思:

  一.以旧促新

  情景导入,认识圆的面积之后,自然是想到该如何计算圆的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  二.转变图形

  根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。研究学生的实际情景,电脑先演示2、4、8等份圆,分别拼成一个近似的平行四边形,让学生观察它越来越像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,最终它就会变成长方形。完成另一个重要数学思想—极限思想的渗透。

  三.公式推导

  长方形的面积学生都会计算:S=ab引导学生观察长方形的长和宽与圆有什么样的关系:发现长=πr,宽=r,长方形的面积=圆的面积,从而推导出S=ab=πr2

  四、重视合作

  重视小组学习,促进合作交流。实践证明,小组讨论有利于全体学生主动性的发挥,有利于师生之间、学生之间的信息交流,有利于不一样思维的碰撞。对圆的推导过程的创新比较适合运用合作探究的学习方式。在这节课的教学中,教师从学生手中的材料出发,让学生摆一摆,结合自我的创新说一说,经过小组合作进行探究活动,既鼓励学生独立尝试,又重视学生间的合作互助,给学生供给了多向交往的机会,提高了学生合作学习的意识。学生在学习中互相交流,提高了观察、分析及解决问题的本事。

  五、培养创新

  变传统的知识传授过程为“解决问题”序列的探究过程。教学过程中,创设一些对学生来说需要开辟新路才能解决的问题情境,对于提高学生的创新技能是十分有益的。六、练习设计

  对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题公式公式。

  七、存在问题

  在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应当改善的地方和努力的方向。

圆的面积教学反思2

  “圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫{做故“无心插柳柳成荫”教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?“学生积极发言”想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎么计算圆的面积等等” 。

  学习目标明确后,我发现孩子在研究的时候都井然有序,没有不知道该如何入手的,都明确自己在讨论什么,要解决什么问题。在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生提供充足的时问、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我的收获是教学中的应变能力提高了,不同的学生给了我不同的体会。当然也发现了自己的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改进的地方;在提出一个问题后应给予学生一定的思考时间,不要过急。在今后的教学中我会深深记住这次巡讲,继续改进自己的教学水平。

圆的面积教学反思3

  学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

  根据以前的经验,也总是通过实例,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积。

  总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,。

  概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环,通过观察或量一量圆环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆。

  第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操作也有课件濱示,还有练习,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积。

  学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积。

  但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

  通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。

圆的面积教学反思4

  教材分析

  教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

  学情分析:

  1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

  2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

  教学目标

  1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

  2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学重点和难点

  教学重点: 圆的面积公式的推导及应用公式计算

  教学难点:探究圆的面积公式的推导过程

圆的面积教学反思5

  本课是在学习的圆的初步认识和圆的周长的基础上进行教学的,教学重点是理解圆面积的推导过程。

  圆面积公式推导过程中隐含着一种重要的“转化”与“极限”数学思想方法。教学时我先让学生根据方格图大胆地猜想出圆面积的范围。之后在教师的启发引导下,通过学生的动手操作、观察、发现拼成的近似长方形的长和宽与圆的什么有关,从而推导出圆的面积,使学生获得用转化法可以求出圆的面积,体现一种“化圆为方”、“化未知为已知”的转化思想。在此基础上让学生通过讨论、操作、探究得出圆面积的计算。这一过程的设计正体现了新课标所倡导的三维教学目标,由重结论向重过程转变。不仅重视学生数学知识的获得,更重视数学思想和数学方法的形成,使学生学得更有趣,更有价值。

  教学中主要通过回忆、迁移、动手操作、自主探索,最后课件清晰演示加以辅助,理解圆面积公式的推导过程,从而突破本课的重难点。

圆的面积教学反思6

  本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到最优化。

  一、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

  如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

  二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

  例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

  教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。 因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图

  但是在教学过程中,对于圆的面积公式还应让学生多点时间去思考,去推导。还可以让学生用其它的方式去推导、理解。在细节的设计上还要更精心。

圆的面积教学反思7

  《圆的面积(二)》是在学生掌握了圆的面积计算公式的基础上进行教学的。主要是让学生利用圆的面积公式,解决生活中的一些实际问题,体会转化的数学思想。在本课的开始,我请学生回忆圆面积公式的推导过程。已知周长,求圆的直径、半径。在此基础上,让学生独立解决已知半径,求面积,已知直径,求面积,已知周长,求面积三个问题,学生在这种情况下,学习圆的面积计算,有利于知识的迁移。

  在教学过程中,我从根据圆的半径,直径,求圆的面积,到根据圆的周长计算圆的面积,体验其中的不同,先让学生已知半径,求面积,已知直径,求面积,再到已知周长求面积,这样设计降低了教学难度,使学生明白要求圆的面积必须知道圆的半径,从而突破了教学难点。

  在学生掌握了圆的面积计算方法以后,我让学生猜测,圆还可以转化成我们以前学过的什么图形,圆的面积与什么有关,让学生进行估测,当学生猜测出圆还可以转化成我们以前学过的三角形,圆的面积,可能与圆的半径有关系时,设计实验验证。沿半径把圆形杯垫剪开,并把纸条从长到短排列起来,观察并探索圆的面积公式,出示和圆有关的组合图形,让学生通过仔细观察与分析,结合前面学过的平面图形的面积知识,求出老师出示的组合图形的面积。学生的好奇心,求知欲被充分调动起来,而这些为他们随后进一步展开探索活动做好铺垫。

  我在本节课中利用动画演示与动手操作相结合,加深学生对题目的理解,结合所学的知识,让学生学以致用,解决创设的情境问题等基础练习,提高练习,综合练习,拔高练习四个层次,从四个不同的层面对学生的学习情况进行检测。既巩固所学的知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的侧重点,较好地完成了教学目标,学生学习积极性高,乐学,课堂气氛活跃、和谐,学生亲身经历提出猜想,动手实验、验证,得出结论的过程,对知识进行再创造。

  教学中存在不足和需要改进的地方:没有加强训练小学生的计算能力,在上课过程中发现学生的计算速度比较慢,学生还没有达到熟练的程度,特别是当半径等于一个小数,这时学生最容易犯错。在以后练习中,重点训练小数的平方,达到正确解决问题的目的。

圆的面积教学反思8

  “圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我异常注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:

  一、以旧引新,渗透“转化”思想

  在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、动手剪拼,体验“化曲为直”

  学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越

  接近图形平行四边形或长方形。再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。

  四、演示操作,感受知识的构成

  经过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的构成。

  五、分层练习,体验运用价值

  结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用本事。在每一道练习题的设置上,都有不一样的目的性,注重每个练习的指导侧重点。

  但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。

圆的面积教学反思9

  1、运用转化思想,解决数学问题。在教学过程中,我首先借助估算了解圆的面积的意义,再让学生利用学具进行操作,自主发现圆的面积与拼成的平行四边形的面积的关系,推导出圆的面积计算公式,降低了学习的难度;同时在教学中将“化曲为直”(即把圆进行分割,学生在剪拼过程中,从已有的知识经验慢慢找到解决圆面积计算公式的方法,激发学生的求知欲望)和转化的数学思想渗透到学生思维中,让学生注重知识的发现和探究的过程。

  2、注重联系生活实际,开展探究性的数学活动。学生从认识直线图形发展到认识曲线图形是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已经具有了一定的逻辑思维能力,已经有了许多机会接触到数与计算、图形与几何等较为丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,因此在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识的发现和探究过程,让学生从中获得学习数学的积极情感体验和感受数学的价值。

  3、练习设计有坡度,由浅入深地巩固新知。教师在指导课堂练习时,先是让学生解决马儿的困惑,也就是知道半径求圆的面积,然后是知道直径求圆的面积,在拓展提高中告诉圆的周长,解决与圆面积有关的问题。练习安排坡度适当、由易到难,使学生由浅入深地掌握了知识,形成了技能。同时还培养了学生的逻辑思维和推理能力。

  4、重视图示的作用。结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。

圆的面积教学反思10

  一、创设情境,导入新课

  课件演示:1、让学生想一想自动喷水装置喷水范围应该有多大呢?是什么形状?

  2、现在你想提什么数学问题?

  揭示课题:圆的面积

  二、师生互动,推导公式。

  1、认识圆的面积

  a、什么是圆的面积呢?

  b、出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?

  c、圆的大小主要与哪些因素有关?(半径、直径、周长)

  出示结语:圆所占平面的大小叫做圆的面积

  2、回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)

  三、生生互动,推导公式

  圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!

  1、小组讨论:设计方案,并汇报。

  a、让学生拿出卡纸(1),观察卡纸(1)上的圆被分成多少等分,圆被转化成什么图形呢?

  b、让学生拿出卡纸(2),观察卡纸(2)上的圆被分成多少等分,圆又被转化成什么图形呢?

  那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)

  c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)

  d、观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?

  发现:平均分的份数越多,拼成的图形越接近长方形。

  e、转化成长方形,推导圆的面积公式。

  动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。

  展现以下问题:(1)长方形的长相当于圆的()?(2)长方形的宽相当于圆的()?

  (3)长方形的面积相当于圆的()?(4)因为长方形的面积=()所以圆的面积=()。

  2、小组讨论后,并演示公式推导的全过程。

  3、揭示字母公式()。

  小结:可见要求圆的面积只要知道什么就行?(半径)

  四、练习巩固

  1、运用公式学习例1。

  学生试做,说理由,归纳总结。

  2、完成基本练习(做一做)

  五、解决问题

  解决课件问题。

  六、课堂总结

  1、这节课我们发现了什么、学会了什么?

  2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。

  七、课外作业

  练习十六的1~3题

  《圆的面积》教学反思

  本节课充分体现了教为主导,学为主体的探究性自主学习与小组合作学习相结合的教学思想。并在师生互动、生生互动中去完成教学任务。由于学生已经有了探究三角形、平行四边形、梯形面积公式的经验。本课一开始我就鼓励学生回忆以前是如何研究平面图形的面积的呢?现在又如何探究圆的面积呢?刚开始学生有点不知所措。但现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。其次再通过把圆从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再让学生从这个长方形中找到圆的周长,从8等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于打下基础。

  圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。让学生知道新的问题可以转化成旧的知识,并利用旧的知识解决新的问题。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。然后让生生互动,再根据自己的发现,小组合作,动手探究把圆转化成学过的平面图形。并通过这个环节来加深对新知识的巩固。在这一节课里我觉得学生学得很主动,由于大胆放手让学生运用以有的知识经验去解决新问题,学生感受到了成功的喜悦。同时我也觉得在新课改的理念下我们把学习的主阵地还给学生,学生的各方面能力得到了很大的提高。通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图

圆的面积教学反思11

  “圆”是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都能得到发展,设计了以下几个环节:

  一、让学生经历知识的形成过程,渗透转化的数学思想

  本课开始,我就让学生通过涂圆比赛建立圆的面积概念,再让学生回忆所学过的平行四边形面积公式推导的过程,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了。但通过我用课件演示,让学生讨论并再现平行四边形面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。这个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  二、演示操作,加深理解圆面积的计算公式

  在教学中,我先借助电脑课件生动直观地演示了圆“化曲为直”“化圆为方”的变化过程,验证了之前的猜想——圆确实可以转化成我们所学过的图形,也向学生渗透极限思想。接着再放手让学生应用转化的方法进行操作,把一个圆转化成一个近似的长方形,从中发现圆和拼成的长方形的联系,并根据长方形的面积公式推导出圆的面积的计算公式,在这过程中,不但使学生有效地理解和掌握圆的面积计算公式,而且也使他们获得了转化的数学思想方法,并培养了学生探索问题的能力。

  三、练习设计体现了针对性,层次性和实践性

  本节课的课堂练习即有对圆的面积计算公式的巩固性练习,也有运用圆的面积解决简单的实际问题的练习,还有综合运用圆的有关知识解决生活问题的练习。通过这些练习,有助于学生巩固圆的面积的有关知识,形成运用技能,培养学生的数学能力。

  四、存在不足和改进的地方有:

  1、留给学生操作、交流合作的时间和空间不够充分,学生对转化后长方形的长相当于圆的什么?这个知识点的突破还不够理想。

  2、学生在口述推导圆的面积公式的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。

  3、在教学中我还需大胆放手把主动权交给学生,在提出一个问题后给予学生的思考时间不过充足,过于着急。这是我在今后的的工作中应继续改进的地方。

圆的面积教学反思12

  圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算

  学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环 的本质问题。

  根据以前的经验,也总是通过实例 ,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积,总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,.概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环, 通过观察或量一量圆 环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆,第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操 作也有课件濱示,还有练习, 非常的'形象和直观,吸引了学生的注意力,激发了学生学习的兴

  趣。 也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积.

  学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积,但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、 “环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

  通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展.

圆的面积教学反思13

  圆的面积的推导是建立上转换思想上推导出来的,在课前预习上我让学生自己准备一个圆平均分成偶数等分8。12。16。24均可,并未说明均等分以后的作用,让学生带着疑问进入到今天的学习。

  学习之初,我课件出示的是工人铺人工草坪,问草坪的面积是多少平方米?这个问题,一方面让学生了解圆的面积的意义,另一方面也使他们体会数学与生活的紧密联系和学习数学的必要性,由于学生没有学过曲线围城图形的面积求解,所以课堂的开始关于草坪面积的求解,学生毫无头绪,这时再讲让学生回忆三角形,平行四边形的推导过程,学生能顺利回忆出释割补,拼接转化成他们熟悉的图形长方形。这时再顺利过渡到圆的面积的推导我们是不是也可以用这样的办法呢,就水到渠成了。

  在让学生拿出自己准备好均分的圆,自己试着拼一拼中,发现大部分同学都只是均分成了八份,离长方形的还有一定的距离,这时我课件出示。16,32等分以后拼成的图形使学生发现分的份数越多,拼成的图形的边就越直,越接近于长方形,在这种理解和掌握圆的面积公式的推导过程中,不仅培养了学生的动手能力,还培养了学生的极限思想。

  在这节课的学习中发现以下几点不足之处:

  一:学生的动手能力差。在让学生课前准备圆,第二天检查时仍然发现好多同学没有准备,在准备的同学中,均分到8份以上的同学又少之又少,所以在以后的教学中会事先分好组,避免出现此类事情。

  二:观察能力差。由圆拼成长方形以后,观察长方形的长与宽与圆的半径和周长由什么关系时,很多同学并不能找到他们之间的关系,由此发现学生的观察能力还需要进一步的引导和培养。

圆的面积教学反思14

  教学内容:人教版六数上第66页、67页

  教学目标:

  1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。

  3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.

  2.会正确计算圆的面积。

  教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆

  教学过程:

  (课前游戏)

  猜谜:前面有一片草地(打一植物)

  草地上来了一群羊(打一水果)

  草地上有一群羊,突然来了一群狼(打一水果)

  师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。

  一、 导入:

  师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)

  二、 认识圆的面积:

  1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。

  师:圆表面的大小就叫做圆的面积。

  2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?

  生:一个圆面积大,一个圆面积小。

  师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。

  生:半径或者直径越长,圆的面积就越大。

  师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。

  三、观察与尝试猜测:

  1.(出示正方形与圆的课件)

  师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多

  少呢?

  生:大正方形的面积是4r,小正方形的面积是2r。

  2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?

  生:圆的面积比大正方形的面积小,比小正方形的面积大。

  师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?

  生:3r。

  师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。

  四、 小组合作、拼摆。

  1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?

  生:底*高。S=ah。

  师:还记得平行四边形的面积计算公式是如何推导出来的吗?

  是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。

  师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222

  2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?

  生:三角形或者等腰三角形。

  师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!

  提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。

  学生开始小组合作。

  3. 汇报合作结果。

  师:你们都拼成了什么样的图形?上台来展示一下吧。

  生分组上台展示。

  要求学生汇报自己是怎样拼的,拼成了一个什么图形。

  师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?

  生:分得越多,越接近长方形。

  五、 面积计算公式推导:

  1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!

  2.师:找到答案了吗?

  生:长是πr,宽是r。

  师:长方形的面积呢?请同学们在练习本上写一写。

  那圆的面积呢?也写一写,读一读吧。

  学生汇报。师板书。

  3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?

  4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?

  生:半径。

  师:知道什么也可以求出圆的面积呢?

  生:直径、周长。

  师:下面我们就来试一试吧!

  六、 巩固练习。

  1. 平方的口算练习。

  1 2 3 4 5 6 7 8 9 10 20 3022222222222 2

  2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。

  3.圆形花坛的直径是20米,求圆形花坛的占地面积。

  学生先汇报思路,再在练习本上完成。

  4. 树干的周长是125.6米,求树干的横截面积是多少?

  学生先汇报思路,再在练习本上完成。

  七、 总结:

  师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?

圆的面积教学反思15

  圆面积公式的推导是在学生掌握了平行四边形、三角形、梯形的面积公式推导后进行的。所以在设计教学时,特别注意遵循学生的认知规律,重视学生获取知识的过程,重视从学生的生活经验和已有知识出发进行教学设计,为学生自主探究创造条件。

  为学生探究做好铺垫。先让学生回忆一下以前学过的平面图形的面积公式的推导方法,并利用多媒体课件再现推导过程。学生在回顾旧知识的过程中,领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成学过的图形来推导的,从而渗透转化思想,并为后面自主探究推导圆的面积作好铺垫。

  引导学生主动探究。让学生按照老师的要求来推导面积公式,学生以小组为单位,通过合作拼摆,把圆转化成已学过的图形,并在操作过程中,学生边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=周长的一半×半径。当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在学生推导出面积公后,我又利用课件的演示,引导学生观察发现“等分的份数越多,拼成的图形就越接近于长方形”,从而渗透极限的思想。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来。学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由地发展,亲身经历了知识的迁移过程,体验了成功的喜悦。

  通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能培养学生逻辑思维的能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

【圆的面积教学反思】相关文章:

圆的面积教学设计06-03

《圆的面积》说课稿03-30

圆的周长教学反思09-03

《圆的周长》教学反思08-19

圆的世界教学反思07-18

圆环面积教学反思08-30

圆的标准方程教学反思08-14

《直线和圆的位置关系》教学反思08-30

三角形的面积教学反思08-29

六年级《圆的周长》教学反思09-07