八年级数学教学反思
作为一名到岗不久的老师,我们要在课堂教学中快速成长,教学的心得体会可以总结在教学反思中,那么什么样的教学反思才是好的呢?以下是小编为大家收集的八年级数学教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
八年级数学教学反思1
新课程改革进行地如火如了荼,教学模式也随之一改再改,日见丰富。新课程、新标准、新要求……一切都是新的。数学教学也不例外。如何在数学教学中脱陈出新,在课堂中给学生以充分发挥余地,从而得到锻炼,达到基础知识、能力培养的效果,下面就《实数》这一节谈一谈。
这一节课的教学目标是会用二次根式乘除法法则在实数范围内进行有关实数的简单四则运算。在教学中让学生经历了探索法则的过程,渗透从特殊到一般的认识事物的规律。但不能忽略学生的实际能力,设计的手段与学生不能分离。
在教学活动中,不能过于简单或复杂,设计简单时,学生轻易就找到了答案,就会产生骄傲和自满情绪,渐渐对参加活动失去了兴趣,对以后教学产生不良后果,而设计复杂时,学生产生畏难情绪,不利于调动学生的学习积极性,在教学中既要考虑到学生的基础情况,又要考虑到调动学生学习积极性、主动性,所以教学设计很重要。
今后,在教学中,课堂设计上要多下功夫,要根据学生的能力设计出符合学生实际情况的'知识,结合教材,注意难易程度,调动学生学习的主动性,发挥他们的潜能,达到预期的效果。
八年级数学教学反思2
面临国庆假期,学生有些沉不住气,放假回来还要进行月考,无疑,这对学生是一种考验,学生没有足够的自制力利用假期进行复习,只要它们能够按时完成作业我就心满意足了。因此,要在假期前做一定的准备,按照我们的集体备课时间,我们赶在运动会之前专门安排一节课进行复习,也算是自我安慰吧。
本次考试我们把前两章的内容都加进去。第一张前面进行了复习、检测,也比较简单所以专门针对第二章进行重点复习。第二章轴对称主要内容是从生活中的图形入手,学习轴对称及其基本性质欣赏体验轴对称在生活中的广泛应用。然后在此基础上利用轴对称,探索等腰三角形的性质,学习它的判定方法,进一步学习等边三角形。本章轴对称的性质、等腰三角形的`性质和判定是重点要注意让学生掌握。人们生活在三维空间里丰富多彩的图形世界给图形与几何的学习提供了大量素材,在教学中我们注意联系实际,从实际出发引入概念并将所学知识应用到实际生活中。本章内容较多,教学时注意各部分之间的联系,进行有机的整合。在内容处理上书中含有大量的思考、探究、归纳等然后学生多活动,探索发现几何,经历知识的“再发现”过程。在探究活动中发展创新思维能力,改变学生的学习方式。在发现的基础上再经过推理证明这些结论使得推理证明成为学生观察、试验、探究得出结论的自然延续是图形的认识与证明有机的整合。例如Χ缘妊三角形“等边对等角”“三线合一”的性质的得出ネü设置“探究”“思考”让学生剪出等腰三角形,并进一步利用轴对称的性质思考其中相等的线段和相等的角,进而发现等腰三角形的性质。
接着通过做出等腰三角形的对称轴得到两个全等的三角形,从而利用三角形的全等证明。这样让学生经历观察、试验、探究、归纳、推理、证明的全过程。
八年级数学教学反思3
有人曾说“课堂教学总是一门带着遗憾的艺术”,作为一名教师,我对此也颇有感慨。面对新的理念,新的结构,新的形式,新的体系,在课堂教学中,教师是否能最大限度地发挥主导作用,直接影响和制约着学生主体作用的发挥。以下我就谈谈在本节课中教师的主导作用。
一、设疑导思探索公式--------引导者
教师的主导作用首先体现在培养学生的学习兴趣方面。因为教师是课堂心理环境的直接创造者,教师“导入”的情境、语言、方法直接影响学生的学习兴趣及其探索知识的欲望。由于我校学生的基础都不是很好,所以本课采用学生刚学过的“多项式乘法法则”来吸引学生的注意力,提高学生的学习兴趣,从而使其端正学习态度全神贯注地投入到学习的整个过程中。
二、激活主题理解公式--------促进者
教师的主导作用还应体现在积极进行学法研究,加强学法指导。本节课中,先用图形的面积来对公式作出直观的理解,再用口诀来概括公式,使学生对公式的理解更加形象生动;最后通过例题让学生按公式对号入座,进一步理解公式中的a和b既可以表示数也可以表示字母,既可以表示单项式也可以表示多项式。采用由直观到抽象,由抽象到形象,由形象到具体,层层递进,由浅入深,深入浅出的办法,使学生对完全平方公式有一个充分理解的过程。
三、组织交流应用公式--------调控者
由于学生所处的文化环境、知识基础和自身的思维方式不同,将导致不同的学习结果,即使是思维反映很灵敏的学生,在有些时刻也会遇到一些思维障碍。本节课在学生练习过程中,要仔细观察学生探索活动的情绪表现,从学生的言语、表情、眼神、手势和体态等方面观察他们的内心活动,分析他们的思维状态和概念水平,捕捉各种思维现象,随时调整教学过程,让学生自己去反思、纠错,而教师则在关键时刻引导或者作出恰当的.点拨。教师的主导作用还应体现在及时发现学生思维发展中出现的错误后有针对地指导、引导学生进行讨论和探究。尤其是对(—2a—5)2的应用可以看成〔(—2a)+(—5)〕2对应(a+b)2,也可以看成〔(—2a)—5〕2对应(a—b)2;更可以看成〔—(2a+5)〕2=(2a+5)2;而对于(a+b+c)2的应用,可以用多项式乘法法则(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后结果是一样的。这样通过变式练习,从而使学生多角度、全方面地对完全平方公式进行充分认识,完全平方公式中的a和b可以表示单项式也可以表示多项式,完全平方公式可以看成一个公式也可以看成两个公式,增加学生对完全平方公式应用的灵活性,要让不同的学生得到不同的发展。
四、明晰结论深化公式--------提高者
教师主导作用应是画龙点睛作用。观察思考、表达是伴随探究过程不可或缺的因素。本节课中,通过纠错练习,对四道题的正确答案进行比较分析得出总结:如果a、b的符号相同,乘积的2倍的符号用“+”;如果a、b的符号相反,乘积的2倍的符号用“—”。使学生对公式的认识从感性认识上升到理性认识,思维从复合阶段前进到明晰阶段。通过对公式的缺项选择填空练习,使学生对完全平方公式的认识进一步升华。
八年级数学教学反思4
下面是我在教学中的几点体会:
一、教学中的发现
(1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:
1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;
2.增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;
(3)列分式方程错误百出。
针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的`相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。
二、教学后的反思
通过这节课的教学及课后几位专家的点评,这节课的教学目的基本达到,不足之处本节课的容量较大,如果能采用多媒体教学效果会更好;在以后的教学中我将继续努力,提高自己的教学水平。
八年级数学教学反思5
这节课我感觉较好的方面是课堂气氛比较活跃,本节课我比较倾向于让学生了解黄金分割,感受生活中所存在的数学艺术,调节一下之前比较枯燥的学习心情,找了很多观赏性的图片,以及生活中与黄金分割有关的内容,所以学生感觉很新奇,积极性也很高。
这里主要说说不足的地方,其中最大的'问题在于对教材内容把握不够,概念的理解分析不到位,这点可以从课堂练习和课后作业的反馈情况看出。首先黄金分割的概念没有讲得很清楚。重要的三个比值没有强调到位:较长线段与整条线段的比值是 、较短线段与较长线段的比值是 、较短线段与整条线段的比值是 、两点(黄金分割点)之间的距离与整条线段的比值是 。其次黄金分割中的分类讨论的思想也由于时间的限制没有渗透。所以学生对概念理解不是很深刻,课堂练习屡屡出错,课后作业也出现不少问题。
北师大版的教材对于我这种经验不是很丰富的老师来说确实是个挑战,内容看似简单,实际包含很多知识点,如果仅仅按教材上课,是远远不够的。因为学生现有的能力有限,如果没有老师的指导,很难进行应用。所以潜心钻研教材是很有必要的,上课之前可以先问问有经验的老师这节课要注意的东西,把握好知识点。
除此之外,除了精心备课,还要关注学生课堂上的参与程度也是很重要的,根据学生的状态适时调节讲授方式会使课堂效率更高。
八年级数学教学反思6
我认识到作为一名新教师课前备课固然重要,课后反思更有利于及时反馈教学实践的信息,不断丰富自己的教学经验,提高自身教学水平。
我总结了一下自己教学反思的几个方面情况:
第一对“情景创设”的反思:教完每节课后,对教学情景创设进行回顾总结,考虑所创设的情景是否真的让学生感受到与实际生活联系紧密,是否与上课内容相符,在引入过程中还存在哪些不和谐之处,同时根据这节课的教学体会和从学生中反馈的信息,努力修正下次课的情景创设,并及时改进教案。
第二对“上课效果”的反思:备课的最终目的是收到好的教学效果。因此,一节课下来,我们应认真从每一位学生的上课表情、课堂作业、回答问题、板演以及我们自己的课堂观察等环节反思本节课的实际效果如何。一定要做到心中有数。效果好就可以积累经验,效果差可以及时找出原因,并在教案的反思一栏中作好详细的记载以便及时修正。
第三对“教法学法”的反思:上完一节课,静心沉思,摸索出其中的某些教学规律;教法上有哪些创新;组织教学方面有何新招;启迪是否得当;思维训练是否到位等等。及时记下这些得失,并进行必要的归类与取舍,考虑一下再教这部分内容时应该如何做,这样可以做到扬长避短、精益求精,把自己的教学水平提高到一个新的高度。
第四对“评价体系”的反思:每堂课后认真思考一下本节课的.评价内容是否更多地指向有价值的数学任务、数学活动;评价的方式是否多样、是否激起学生的学习兴趣,唤起他们的自尊心和自信心;评价的主题是否面向全体学生、是否因材施教等等。
第五对“疏漏之处”的反思:俗话说:“人非圣贤,孰能无过”。教学中的疏漏与失误在所难免,如教学内容安排欠妥,教学方法设计不当,教学重点不突出,教学方式单调等等。课后进行这样的反思,及时客观的找出教学过程中的不足与失误,并虚心听取学生的意见,正确的面对这些问题,做好及时查漏补缺工作,我相信这样做,课堂一定会越来越来完美。
德国教育学家第斯多惠所说:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞,所以,教师还要能尊重、爱护、体贴学生,能够严以律己、以身作则,赢得学生的尊敬、爱戴与钦佩,只有这样教师的忠告和批评会激起学生改正错误的决心和信心,教师的赞扬会引起学生的内心愉快和深深的满足,教师的正确引导会激发学生主动学习的兴趣。
在优秀教师的课堂上,我看到的不是老师告诉学生问题的答案,而是老师帮助学生学会如何得到信息,如何提取有效信息和运用信息解决问题。我看到的是优秀教师如何用自己的人格魅力吸引学生踊跃地发表自己的独到见解,我想这也是我应该不断努力方向。
经过不断地学习——反思——提高,我受益非浅,也更加深刻地认识到了在教学中及时反思的重要性和必要性,它会使我逐渐形成自我反思的意识和自我监控的能力。在今后的教学中,我会通过不断地反思来提高自己的教学水平和创新能力。
八年级数学教学反思7
一、设计思路:
在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,
由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。
这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的'引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。
二、教学知识点:
在本课的教学过程中,我认为应从这样的几个方面入手:
1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。
八年级数学教学反思8
1、本节课初步达到了教学目标,突出了重点,层层推进,突破难点,然后放手让学生去猜想同分母分式的加减法法则,尝试着去解决问题,从对同分母分数加减法法则类比出同分母分式的加减法法则,同时引导了学生把一个实际问题数学化;低起点,顺应着学生的认知过程,设置了随堂练习,在用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去计算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
2、是以讨论的形式呈现给学生例题1,让学生去感受体验,学生兴趣高涨。每一个层次的练习完成之后让学生去总结一下在解题过程中的收获,在此基础上引导学生发现解题技巧,把学生的认知提升了一个高的层面上,达到了用法则而不拘泥于法则,通过分析题目的显著特点,来灵活运用方法技巧解决问题。同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
3、是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的`挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
不足:(1)学生对于同分母的分式的加减运算掌握得比较好,但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。
(2)分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,在计算时应先观察分式的特点,达到化繁为简的目的。
八年级数学教学反思9
《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。
一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△ABC中,AC=3,BC=4,有的同学直接根据勾股定理得:AB=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。
二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.
三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。
四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。
五是缺少方程思想和转化思想,使综合类试题痛失分数。
六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。
针对上述问题,痛定思痛,感悟颇多:
第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的.学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生独立完成,并进行一定量的训练,才能实现教学的有效性。
第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。
第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。 学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。
第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。
第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观性。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。
相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。
八年级数学教学反思10
整式的乘法是七年级上学期的重点内容,而整式的乘法运算法则是以幂的乘法运算性质为基础的,所以学好幂的运算对后续内容的学习产生较大的影响。根据大多数学生在幂的运算学习中运算法则的应用不熟练,运算符号的确定易错的问题,本节课通过典型例题帮助学生在进一步提高运算能力并能进行法则的灵活应用。
依据普陀区中学数学教学常规实施要求:复习课教师应遵循“循环出现、螺旋上升、不断深化”的认知规律。
本课在实际教学中,一方面由典型基础题帮助学生回忆幂的运算法则,再通过分析幂的运算法则的.特征解决易错题;同时在各例题的设计上层层推进。
例1单用同底数幂的运算法则解决对于底数不相同但互为相反数的幂的乘法运算;
例2需注意区分幂的运算法则与同底数幂相乘法则的不同处,并注意运算顺序与运算符号的确定;
例3在对知识点进行系统整理后,综合运用幂的三条运算法则及合并同类项的知识点进一步强化练习,提高综合运算能力;最后由一题两解引导学生逆用法则简化运算。回顾整节课,学生用数学语言概括知识点的能力、综合计算能力有较明显的提高,并能较熟练逆用法则简化运算及解决一些问题。但在学生自主小结中,回顾知识点情况较多,质疑及自身感悟较少,应引导学生感悟数学思想,由此使学生形成数学价值观。
我想将以上问题改进后,必将能逐步达到二期课改的发展积极的情感态度和价值观这一要求的。
八年级数学教学反思11
一、分析教材:
平均数、中位数和众数是三种反映一组数据集中趋势的统计量。当一组数据中出现一些极端数据时(个别数据偏大或偏小),平均数会受其影响,不能很好地代表这组数据的集中趋势。中位数或众数虽然不受极端数据的影响,但它们不能利用所有的数据信息,有时也不能完全反映出一组数据的集中趋势。
二、教学目标:
让学生通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。培养学生发现问题、分析问题、解决问题的能力,并在具体活动中培养学生的探究意识与合作能力。让学生感受统计在生活中的应用,增强统计意识,培养统计能力。
三、教学重难点:
让学生会求中位数和众数,能结合情景理解其实际意义。教学难点是能根据具体问题情境选择适当的统计量表示数据的不同特征。
四、教学步骤:
上课前,我先让同学们玩“猜年龄”的游戏,让学生们初步感知平均数受到极端数据的影响,而不能反映出数据的一般水平。接着呈现一个超市工作人员工资的表格,引导学生讨论“怎样表示这个超市工作人员的月工资水平”在讨论中学生体会到平均数受极端数据的'影响,不能很好地代表这组数据,需要新的统计量。从而引入新的统计量——中位数和众数。最后继续创设情景,让学生明白当数据个数奇、偶不同时,求中位数的方法也不同。
反思
1、数学活动的主人是学生,教师是组织者、合作者、指导者,在教学本课时,我以“小陶找工作”这一线索,组织学生思考、讨论“用月平均工资1000元来描述员工的月工资水平合适吗”,让学生自我探索,解决问题。
2、数学学习要联系学生已有的生活经验,让学生感受到数学源于生活,并且通过学习,可以把数学知识运用到生活中去,解决生活中的问题,让学生体会到数学的价值,提高学习数学的兴趣。
3、当学生的回答偏离正题时,教师要及时地引导,帮助其认识问题的本质是什么,充分教师引导。
八年级数学教学反思12
轴对称图形不仅仅是把一个图形平均分成两半,而且对于一幅图中的任何两个对应点到对称轴的距离都是相等的.。
在教学“轴对称”这节课时,首先让学生独立画出例题1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例题1,接着在例题1的教学过程中,适时的引出两个图形成轴对称的概念,并引导学生从整体上概括出轴对称的特征,通过引导学生分别观察不同类型的轴对称图形的各对应点与轴之间的关系,进而让学生探索、发现图形成对称的基本性质。
不足之处如果这节课是运用多媒体上的话就更直观、更有效果了,直接可以显示出“折叠”、“重合”形成轴对称图形,清晰而一目了然。
八年级数学教学反思13
听课是学生取知识,发展力的重要途经,是学习的中心环节,作为一名中学生,他的大部分时间都是在课堂上度过的。所以教家呼吁,向课堂40分钟要质量,就是个原因。如果我们忽视了听课这个环节,就是检了芝麻,丢了西瓜,得不偿失。
听课有个方法和策略的问题,不少同学听课方法不对头,意力不集中,经常分心走神;有的同学听课不得要领,掌握的知识支零破碎;有的同学极其被动,手慌脚乱,无所适从;有的同学听课流于形式,只听热闹不听门道;有的同学我行我素,自以为是,数学课上做外语,外语上做数学,凡此种种,都直接影响听课效果,导致成绩下降,下面谈一谈听数学课的方法,大家参考。
培养审题的好习惯--建立错题本
审题是解题的基础,完全明确问题的文字陈述和符号的含义,准确把握问题的条件和结论,必要时还要适当画出图表,列举、提炼出问题的关键,形成题目脉络。解题中的反思是指学习者对自身解题活动的深层次的反向思考,不仅仅是对数学解题学习的一般性回顾或重复,而是深究数学解题活动中所涉及的'知识、方法、思路、策略等,从中达到解决一类问题。所谓:“数学问题的解决仅仅只是一半,更重要的是解题之后的回顾”。建议学生在复习过程中准备一本专门的解题反思本,把一些典型的例题尤其是典型的错误摘录下来,并对每一题批注在解题过程中,自己都用了哪些基础知识、基本方法以及数学思想方法,解该题时哪些步骤容易出错,是否还有其他的方法,该问题的难点何在,应该如何突破,问题能否推广,在解题时自己有哪些缺点为解题设置了障碍等。等到临近中考时再把这本子拿出来好好复习,会比看书本或其他资料更有针对性,复习效果自然也会更好。
八年级数学教学反思14
今年接手八年级,没教之前,就听多少老师谈过,七年级的数学平均分在20多分,可上了八年级平均分还要糟,当时我还不怎么相信,因为我看过课程不是很难,所以相信我的学生一定能学好。
刚上第一章时是孩子们最头疼的几何题,我仔细阅览课本之后,把第一章的知识点系统起来,缩减到三个图形当中,第一个图形,首先是线段的垂直平分线,学生需要掌握的是:先是会画图形,这个我让学生做过不少练习,在各种不同的图形当中,其后,我让学生分析自己画的图形有什么性质,也就是线段垂直平分线上的点到线段两端点的距离相等,最后,我鼓励学生自己出题,那就是你觉得针对这个知识点你觉得应该怎样出题,才让别人难住,或者让老师难住?学生的学习兴趣立即被调动起来,这也是我期望得到的,第二个图形,是角的平分线,大体思路和第一个图形一样学习,第三个图形是关于对称的,点、线、面、体的`对称,我发现学生对于这三个知识点学的不错,另外镜面对称那一节学生学习效果特别号,包括平时不怎么学习的孩子,原因在于,这一节我设计成实验课,让学习自己动手做实验,然后得出镜面对称的规律,然后依照他们自己得出的规律做题,孩子们对于这样的课意犹未尽,我想,在以后的教学过程当中,如果条件允许,尽量多设计几堂这样的课程,还有一点,就是学生几何题的步骤不会写,可能自己心里明白,但是就是不知道怎么写,由于是重新编排的班级,学生掌握的残次不齐的,针对这个问题,我还是训练学生首先会说,也就是把他们想的说出来,这一步很关键,很多学生不好意思说,怎么办呢我先从好学生下手,让他们上课积极回答问题,带动班级的积极性,效果还不错,课堂上课堂气氛活跃了,证明很多孩子都在听讲,成绩就越好,我鼓励他们,犯了错不要紧,关键是改。
八年级数学教学反思15
1.初中阶段,求函数解析式一般采用待定系数法.用待定系数法解题,先要明确解析式中待定系数的个数,再从已知中得到相应个数点的坐标,最后代入求解.待定系数法确定二次函数解析式时,有三种方式假设:一般式y=ax2+bx+c(a≠0)、顶点式y=a(x-h)2+k(a≠0)、交点式y=a(x-x1)(x-x2)(a≠0,x1、x2是二次函数图象与x轴两交点的横坐标),我们要根据题意选择合适的函数解析式进行假设.
2.存在性问题是一个比较重要的数学问题,通常作为中考的压轴题出现,解决这类问题的一般步骤是:首先假设其存在,画出相应的图形;然后根据所画图形进行解答,得出某些结论;最后,如果结论符合题目要求或是定义定理,则假设成立;如果出现与题目要求或是定义定理相悖的情况,则假设错误,不存在。
3.分类讨论是一种重要的数学思想,对于某些不确定的情况,如由于时间变化引起的数量变化、等腰三角形的腰或底不确定的情况、直角梯形的直角不确定情况、运动问题、旋转问题等,当情况不唯一时,我们就要分类讨论。在进行分类讨论时,要根据题目要求或是时间变化等,做到不重不漏的解决问题。
4.动点问题,首先从特殊的运动时间得出特殊的结论,再变为说明在任意时刻,里面存在的`普遍规律,对于此类问题,常用的解决方法是:先用运动时间的代数式表示出运动线段以及相关一些线段的长,然后通过方程或比例求出运动时间.
5.求最短路线问题,它与求线段差最大值属于同一种典型题的两种演化,都是利用了轴对称的性质来解决问题,前者用的是两点之间线段最短,后者使用的为三角形两边之和大于第三边.
【八年级数学教学反思】相关文章:
八年级数学教学反思06-16
数学教学反思06-26
数学教学反思06-18
八年级上册数学教学反思05-29
八年级数学下册教学反思07-30
八年级数学上册教学反思08-16
初中数学教学反思06-10
数学教学反思优秀03-13
数学复习教学反思10-21
小学数学教学反思06-15